{"title":"Dissipation and Decay of Three-Dimensional Holographic Quantum Turbulence","authors":"Hua-Bi Zeng, Chuan-Yin Xia, Wei-Can Yang, Yu Tian, Makoto Tsubota","doi":"10.1103/physrevlett.134.091603","DOIUrl":null,"url":null,"abstract":"Quantum turbulence is a far-from-equilibrium process characterized by high nonlinearity. Holographic duality provides a systematic framework for simulating the decaying (3</a:mn>+</a:mo>1</a:mn></a:mrow></a:math>)-dimensional quantum turbulence by numerically solving the dual Abelian-Higgs theory in a (<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>4</c:mn><c:mo>+</c:mo><c:mn>1</c:mn></c:mrow></c:math>)-dimensional black hole background. We reveal that different types of decay behavior of the total vortex line density <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>L</e:mi></e:math> emerge depending on the initial vortex line density, ranging from <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>L</g:mi><g:mo>∼</g:mo><g:msup><g:mi>t</g:mi><g:mrow><g:mo>−</g:mo><g:mn>1.5</g:mn></g:mrow></g:msup></g:math> to <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mi>L</i:mi><i:mo>∼</i:mo><i:msup><i:mrow><i:mi>t</i:mi></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>1</i:mn></i:mrow></i:msup></i:mrow></i:math>, similar to the experimental observation of <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mmultiscripts><k:mrow><k:mi>He</k:mi></k:mrow><k:mprescripts/><k:none/><k:mn>3</k:mn></k:mmultiscripts></k:mrow></k:math> in Bradley [], and of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mmultiscripts><m:mrow><m:mi>He</m:mi></m:mrow><m:mprescripts/><m:none/><m:mn>4</m:mn></m:mmultiscripts></m:mrow></m:math> in Stalp [] and in Walmsley and Golov []. Furthermore, by measuring the energy flux at the black hole horizon, we determine that the energy dissipation rate <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>d</o:mi><o:mi>E</o:mi><o:mo>/</o:mo><o:mi>d</o:mi><o:mi>t</o:mi></o:math> is proportional to the square of the total vortex line density, consistent with the vortex line decay equation proposed by W. F. Vinen and also the experimental measurement in . <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"13 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.091603","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum turbulence is a far-from-equilibrium process characterized by high nonlinearity. Holographic duality provides a systematic framework for simulating the decaying (3+1)-dimensional quantum turbulence by numerically solving the dual Abelian-Higgs theory in a (4+1)-dimensional black hole background. We reveal that different types of decay behavior of the total vortex line density L emerge depending on the initial vortex line density, ranging from L∼t−1.5 to L∼t−1, similar to the experimental observation of He3 in Bradley [], and of He4 in Stalp [] and in Walmsley and Golov []. Furthermore, by measuring the energy flux at the black hole horizon, we determine that the energy dissipation rate dE/dt is proportional to the square of the total vortex line density, consistent with the vortex line decay equation proposed by W. F. Vinen and also the experimental measurement in . Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks