{"title":"Human-In-The-Loop Myoelectric Pattern Recognition Control of an Arm-Support Robot to Improve Reaching in Stroke Survivors.","authors":"Joseph V Kopke, Michael D Ellis, Levi J Hargrove","doi":"10.1109/TNSRE.2025.3549376","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to assess the feasibility and efficacy of using real-time human-in-the-loop pattern recognition-based myoelectric control to control vertical support force or vertical position to improve reach in individuals with chronic stroke. This work attempts to move proven lab-based static arm support paradigms towards a controllable wearable device. A machine learning (linear discriminant analysis)-based myoelectric pattern recognition system based on movement intent as determined by real-time muscle activation was used to control incremental changes in either vertical position or vertical support force during a reach and retrieve task, with the goal of improving reaching function. Performance under real-time control of both options was compared to two unchanging static-support conditions (current gold standard) and a no-support condition. Both real-time control paradigms were successfully implemented and resulted in greater forward-reaching performance as demonstrated by increased elbow extension and horizontal shoulder adduction compared to no-support and was not different from the current gold standard static support paradigms. Muscle activation levels with real-time support were lower than the no-support condition and similar to those observed during the static support paradigms. Real-time detection of user intent was successful in controlling both vertical position and vertical support force and enabled greater reaching distance than without it demonstrating both its feasibility and efficacy albeit with some limitations.</p>","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TNSRE.2025.3549376","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to assess the feasibility and efficacy of using real-time human-in-the-loop pattern recognition-based myoelectric control to control vertical support force or vertical position to improve reach in individuals with chronic stroke. This work attempts to move proven lab-based static arm support paradigms towards a controllable wearable device. A machine learning (linear discriminant analysis)-based myoelectric pattern recognition system based on movement intent as determined by real-time muscle activation was used to control incremental changes in either vertical position or vertical support force during a reach and retrieve task, with the goal of improving reaching function. Performance under real-time control of both options was compared to two unchanging static-support conditions (current gold standard) and a no-support condition. Both real-time control paradigms were successfully implemented and resulted in greater forward-reaching performance as demonstrated by increased elbow extension and horizontal shoulder adduction compared to no-support and was not different from the current gold standard static support paradigms. Muscle activation levels with real-time support were lower than the no-support condition and similar to those observed during the static support paradigms. Real-time detection of user intent was successful in controlling both vertical position and vertical support force and enabled greater reaching distance than without it demonstrating both its feasibility and efficacy albeit with some limitations.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.