Katharina Stahl, Sergi Papiol, Monika Budde, Maria Heilbronner, Mojtaba Oraki Kohshour, Peter Falkai, Thomas G Schulze, Urs Heilbronner, Heike Bickeböller
{"title":"Aggregating SNPs Improves Filtering for False Positive Associations Post-Imputation.","authors":"Katharina Stahl, Sergi Papiol, Monika Budde, Maria Heilbronner, Mojtaba Oraki Kohshour, Peter Falkai, Thomas G Schulze, Urs Heilbronner, Heike Bickeböller","doi":"10.1093/g3journal/jkaf043","DOIUrl":null,"url":null,"abstract":"<p><p>Imputation causes bias in P-values in downstream genome-wide association studies. Imputation quality measures such as IMPUTE info are used to discriminate between false and true associations. However, implementing a high threshold often discards true associations, while a low threshold preserves false associations. This poses a challenge, especially for studies genotyped with SNP arrays. In practice, association signals register as spikes of low P-values for SNPs in close proximity owing to linkage disequilibrium, but post-imputation filtering is conducted on SNPs independently. We simulated 1536 small case-control studies on the human chromosome 19 both to quantify the introduced bias and to evaluate post-imputation filtering. The established IMPUTE info thresholds 0.3 and 0.8 were compared on individual SNPs and aggregated spikes in the formats 'best guess genotype' and 'dosage'. Furthermore, we applied two recently published methods, Iam hiQ and MagicalRsq, to assess their effect on filtering. We found differences in false signals and imputation quality between the genotype formats, especially in the midrange between thresholds. In this midrange, 51% and 60% of associated SNPs for best guess and dosage format, respectively, are true associations. For aggregated SNPs, the majority of spikes in the midrange are true associations. We propose a new method, the Midrange Filter, which uses both thresholds and formats to classify spikes instead of SNPs. This method discards up to the same number of false signals as the upper threshold, while preserving all true associations in most simulation settings. The PsyCourse study is included as a real data application.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkaf043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Imputation causes bias in P-values in downstream genome-wide association studies. Imputation quality measures such as IMPUTE info are used to discriminate between false and true associations. However, implementing a high threshold often discards true associations, while a low threshold preserves false associations. This poses a challenge, especially for studies genotyped with SNP arrays. In practice, association signals register as spikes of low P-values for SNPs in close proximity owing to linkage disequilibrium, but post-imputation filtering is conducted on SNPs independently. We simulated 1536 small case-control studies on the human chromosome 19 both to quantify the introduced bias and to evaluate post-imputation filtering. The established IMPUTE info thresholds 0.3 and 0.8 were compared on individual SNPs and aggregated spikes in the formats 'best guess genotype' and 'dosage'. Furthermore, we applied two recently published methods, Iam hiQ and MagicalRsq, to assess their effect on filtering. We found differences in false signals and imputation quality between the genotype formats, especially in the midrange between thresholds. In this midrange, 51% and 60% of associated SNPs for best guess and dosage format, respectively, are true associations. For aggregated SNPs, the majority of spikes in the midrange are true associations. We propose a new method, the Midrange Filter, which uses both thresholds and formats to classify spikes instead of SNPs. This method discards up to the same number of false signals as the upper threshold, while preserving all true associations in most simulation settings. The PsyCourse study is included as a real data application.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.