Using Natural Language Processing Methods to Build the Hypersexuality in Bipolar Reddit Corpus: Infodemiology Study of Reddit.

IF 3.5 Q1 HEALTH CARE SCIENCES & SERVICES JMIR infodemiology Pub Date : 2025-03-06 DOI:10.2196/65632
Daisy Harvey, Paul Rayson, Fiona Lobban, Jasper Palmier-Claus, Clare Dolman, Anne Chataigné, Steven Jones
{"title":"Using Natural Language Processing Methods to Build the Hypersexuality in Bipolar Reddit Corpus: Infodemiology Study of Reddit.","authors":"Daisy Harvey, Paul Rayson, Fiona Lobban, Jasper Palmier-Claus, Clare Dolman, Anne Chataigné, Steven Jones","doi":"10.2196/65632","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bipolar is a severe mental health condition affecting at least 2% of the global population, with clinical observations suggesting that individuals experiencing elevated mood states, such as mania or hypomania, may have an increased propensity for engaging in risk-taking behaviors, including hypersexuality. Hypersexuality has historically been stigmatized in society and in health care provision, which makes it more difficult for service users to talk about their behaviors. There is a need for greater understanding of hypersexuality to develop better evidence-based treatment, support, and training for health professionals.</p><p><strong>Objective: </strong>This study aimed to develop and assess effective methodologies for identifying posts on Reddit related to hypersexuality posted by people with a self-reported bipolar diagnosis. Using natural language processing techniques, this research presents a specialized dataset, the Talking About Bipolar on Reddit Corpus (TABoRC). We used various computational tools to filter and categorize posts that mentioned hypersexuality, forming the Hypersexuality in Bipolar Reddit Corpus (HiB-RC). This paper introduces a novel methodology for detecting hypersexuality-related conversations on Reddit and offers both methodological insights and preliminary findings, laying the groundwork for further research in this emerging field.</p><p><strong>Methods: </strong>A toolbox of computational linguistic methods was used to create the corpora and infer demographic variables for the Redditors in the dataset. The key psychological domains in the corpus were measured using Linguistic Inquiry and Word Count, and a topic model was built using BERTopic to identify salient language clusters. This paper also discusses ethical considerations associated with this type of analysis.</p><p><strong>Results: </strong>The TABoRC is a corpus of 6,679,485 posts from 5177 Redditors, and the HiB-RC is a corpus totaling 2146 posts from 816 Redditors. The results demonstrate that, between 2012 and 2021, there was a 91.65% average yearly increase in posts in the HiB-RC (SD 119.6%) compared to 48.14% in the TABoRC (SD 51.2%) and an 86.97% average yearly increase in users (SD 93.8%) compared to 27.17% in the TABoRC (SD 38.7%). These statistics suggest that there was an increase in posting activity related to hypersexuality that exceeded the increase in general Reddit use over the same period. Several key psychological domains were identified as significant in the HiB-RC (P<.001), including more negative tone, more discussion of sex, and less discussion of wellness compared to the TABoRC. Finally, BERTopic was used to identify 9 key topics from the dataset.</p><p><strong>Conclusions: </strong>Hypersexuality is an important symptom that is discussed by people with bipolar on Reddit and needs to be systematically recognized as a symptom of this illness. This research demonstrates the utility of a computational linguistic framework and offers a high-level overview of hypersexuality in bipolar, providing empirical evidence that paves the way for a deeper understanding of hypersexuality from a lived experience perspective.</p>","PeriodicalId":73554,"journal":{"name":"JMIR infodemiology","volume":"5 ","pages":"e65632"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR infodemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/65632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bipolar is a severe mental health condition affecting at least 2% of the global population, with clinical observations suggesting that individuals experiencing elevated mood states, such as mania or hypomania, may have an increased propensity for engaging in risk-taking behaviors, including hypersexuality. Hypersexuality has historically been stigmatized in society and in health care provision, which makes it more difficult for service users to talk about their behaviors. There is a need for greater understanding of hypersexuality to develop better evidence-based treatment, support, and training for health professionals.

Objective: This study aimed to develop and assess effective methodologies for identifying posts on Reddit related to hypersexuality posted by people with a self-reported bipolar diagnosis. Using natural language processing techniques, this research presents a specialized dataset, the Talking About Bipolar on Reddit Corpus (TABoRC). We used various computational tools to filter and categorize posts that mentioned hypersexuality, forming the Hypersexuality in Bipolar Reddit Corpus (HiB-RC). This paper introduces a novel methodology for detecting hypersexuality-related conversations on Reddit and offers both methodological insights and preliminary findings, laying the groundwork for further research in this emerging field.

Methods: A toolbox of computational linguistic methods was used to create the corpora and infer demographic variables for the Redditors in the dataset. The key psychological domains in the corpus were measured using Linguistic Inquiry and Word Count, and a topic model was built using BERTopic to identify salient language clusters. This paper also discusses ethical considerations associated with this type of analysis.

Results: The TABoRC is a corpus of 6,679,485 posts from 5177 Redditors, and the HiB-RC is a corpus totaling 2146 posts from 816 Redditors. The results demonstrate that, between 2012 and 2021, there was a 91.65% average yearly increase in posts in the HiB-RC (SD 119.6%) compared to 48.14% in the TABoRC (SD 51.2%) and an 86.97% average yearly increase in users (SD 93.8%) compared to 27.17% in the TABoRC (SD 38.7%). These statistics suggest that there was an increase in posting activity related to hypersexuality that exceeded the increase in general Reddit use over the same period. Several key psychological domains were identified as significant in the HiB-RC (P<.001), including more negative tone, more discussion of sex, and less discussion of wellness compared to the TABoRC. Finally, BERTopic was used to identify 9 key topics from the dataset.

Conclusions: Hypersexuality is an important symptom that is discussed by people with bipolar on Reddit and needs to be systematically recognized as a symptom of this illness. This research demonstrates the utility of a computational linguistic framework and offers a high-level overview of hypersexuality in bipolar, providing empirical evidence that paves the way for a deeper understanding of hypersexuality from a lived experience perspective.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Understanding Patient Experiences of Vulvodynia Through Reddit: Qualitative Analysis. Using Natural Language Processing Methods to Build the Hypersexuality in Bipolar Reddit Corpus: Infodemiology Study of Reddit. Characterizing Experiences With Hikikomori Syndrome on Twitter Among Japanese-Language Users: Qualitative Infodemiology Content Analysis. Transformer-Based Tool for Automated Fact-Checking of Online Health Information: Development Study. A Model of Trust in Online COVID-19 Information and Advice: Cross-Sectional Questionnaire Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1