Aleksei Belonovskii, Elizaveta Girshova, Erkki Lähderanta, Mikhail Kaliteevski
{"title":"Predicting VCSEL Emission Properties using Transformer Neural Networks","authors":"Aleksei Belonovskii, Elizaveta Girshova, Erkki Lähderanta, Mikhail Kaliteevski","doi":"10.1002/lpor.202401636","DOIUrl":null,"url":null,"abstract":"This study presents an innovative approach to predicting VCSEL emission characteristics using transformer neural networks. It is demonstrated how to modify the transformer neural network for applications in physics. The model achieved high accuracy in predicting parameters such as VCSEL's eigenenergy, quality factor, and threshold material gain, based on the laser's structure. This model trains faster and predicts more accurately compared to conventional neural networks. The transformer architecture also suitable for applications in other fields is proposed. A demo version is available for testing at https://abelonovskii.github.io/opto-transformer/.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"13 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401636","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an innovative approach to predicting VCSEL emission characteristics using transformer neural networks. It is demonstrated how to modify the transformer neural network for applications in physics. The model achieved high accuracy in predicting parameters such as VCSEL's eigenenergy, quality factor, and threshold material gain, based on the laser's structure. This model trains faster and predicts more accurately compared to conventional neural networks. The transformer architecture also suitable for applications in other fields is proposed. A demo version is available for testing at https://abelonovskii.github.io/opto-transformer/.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.