Dissociation-dependent kinetics and distinct pathways for direct photolysis and OH/SO4− radical dominated photodegradation of ionizable antiviral drugs in aquatic systems

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-03-09 DOI:10.1016/j.watres.2025.123452
Nannan Cui, Linke Ge, Crispin Halsall, Junfeng Niu, Jinshuai Zheng, Peng Zhang
{"title":"Dissociation-dependent kinetics and distinct pathways for direct photolysis and OH/SO4− radical dominated photodegradation of ionizable antiviral drugs in aquatic systems","authors":"Nannan Cui, Linke Ge, Crispin Halsall, Junfeng Niu, Jinshuai Zheng, Peng Zhang","doi":"10.1016/j.watres.2025.123452","DOIUrl":null,"url":null,"abstract":"Advanced oxidation processes (AOPs), such as UV, UV/H<sub>2</sub>O<sub>2</sub> and UV/persulfate, are widely used to remove emerging organic contaminants from wastewater streams. However, knowledge on chemical degradation pathways, reaction kinetics as well as formation and toxicity of key degradates is limited. We investigated the direct photolysis and •OH/SO<sub>4</sub><sup>•−</sup> dominated kinetics, intermediates and toxicity evolution of three ionizable antiviral drugs (ATVs): tenofovir (TFV), didanosine (DDI), and nevirapine (NVP). Their transformation kinetics were found to depend on the dominant protonated states. Under UV-Vis irradiation (<em>λ</em> &gt; 290 nm), TFV and DDI photolyzed the fastest in the cationic forms (H<sub>2</sub>TFV<sup>+</sup> and H<sub>2</sub>DDI<sup>+</sup>), whereas NVP exhibited the fastest photodegradation in the anionic forms (NVP<sup>−</sup>). The anionic forms (TFV<sup>−</sup> and NVP<sup>−</sup>) demonstrated the highest reactivities towards •OH in most cases, while the cationic forms (H<sub>2</sub>DDI<sup>+</sup> and H<sub>2</sub>NVP<sup>+</sup>) reacted the fastest with SO<sub>4</sub><sup>•−</sup> for most of the ATVs. The dissociation-dependent kinetics can be attributed to the discrepancies in deprotonation degrees, quantum yields, electron densities and coulombic repulsion with SO<sub>4</sub><sup>•−</sup> in their dissociated forms. Based on the key product identification via HPLC-MS/MS, the pathways involved hydroxylation, dehydroxylation, oxidation, reduction, cyclopropyl cleavage, C-N breaking, elimination, cyclization and deamidation reactions, which can be prioritized based on the specific compound and the photochemical process. Furthermore, a bioassay showed the photomodified toxicity of the ATVs to <em>Vibrio fischeri</em> (bioluminescent bacteria) during the three processes, which was also demonstrated by ECOSAR model assessment. Nearly half of the chemical intermediates were demonstrably more toxic than their respective parent ATVs. These results provide new insights into understanding the persistence, fate and hazards associated with applying the UV-assisted AOPs to treat wastewater containing ATVs.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"105-110 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123452","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced oxidation processes (AOPs), such as UV, UV/H2O2 and UV/persulfate, are widely used to remove emerging organic contaminants from wastewater streams. However, knowledge on chemical degradation pathways, reaction kinetics as well as formation and toxicity of key degradates is limited. We investigated the direct photolysis and •OH/SO4•− dominated kinetics, intermediates and toxicity evolution of three ionizable antiviral drugs (ATVs): tenofovir (TFV), didanosine (DDI), and nevirapine (NVP). Their transformation kinetics were found to depend on the dominant protonated states. Under UV-Vis irradiation (λ > 290 nm), TFV and DDI photolyzed the fastest in the cationic forms (H2TFV+ and H2DDI+), whereas NVP exhibited the fastest photodegradation in the anionic forms (NVP). The anionic forms (TFV and NVP) demonstrated the highest reactivities towards •OH in most cases, while the cationic forms (H2DDI+ and H2NVP+) reacted the fastest with SO4•− for most of the ATVs. The dissociation-dependent kinetics can be attributed to the discrepancies in deprotonation degrees, quantum yields, electron densities and coulombic repulsion with SO4•− in their dissociated forms. Based on the key product identification via HPLC-MS/MS, the pathways involved hydroxylation, dehydroxylation, oxidation, reduction, cyclopropyl cleavage, C-N breaking, elimination, cyclization and deamidation reactions, which can be prioritized based on the specific compound and the photochemical process. Furthermore, a bioassay showed the photomodified toxicity of the ATVs to Vibrio fischeri (bioluminescent bacteria) during the three processes, which was also demonstrated by ECOSAR model assessment. Nearly half of the chemical intermediates were demonstrably more toxic than their respective parent ATVs. These results provide new insights into understanding the persistence, fate and hazards associated with applying the UV-assisted AOPs to treat wastewater containing ATVs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Dissociation-dependent kinetics and distinct pathways for direct photolysis and OH/SO4− radical dominated photodegradation of ionizable antiviral drugs in aquatic systems A bioelectronic tongue to estimate the toxicological intensity of pollutants in wastewater treatment plant Direct Recovery of High-Purity Uranium from Fluoride-Containing Nuclear Wastewater via Extraction Materials with Ensemble Lewis Sites and a Tandem Electrochemical Device Heatwave Enhance the Adaptability of Chlorella pyrenoidosa to Zinc Oxide Nanoparticles: Regulation of Interfacial Interactions and Metabolic Mechanisms Green and efficient disinfection of antibiotic-resistant bacteria via PI/H2O2 homogeneous system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1