Uncharacterized members of the phylum Rozellomycota dominate the fungal community of a full-scale slow sand filter for drinking water production.

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-03-08 DOI:10.1016/j.watres.2025.123447
Tage Rosenqvist , Sandy Chan , Catherine J. Paul
{"title":"Uncharacterized members of the phylum Rozellomycota dominate the fungal community of a full-scale slow sand filter for drinking water production.","authors":"Tage Rosenqvist ,&nbsp;Sandy Chan ,&nbsp;Catherine J. Paul","doi":"10.1016/j.watres.2025.123447","DOIUrl":null,"url":null,"abstract":"<div><div>Slow sand filters (SSFs) for drinking water production are habitats for diverse microbes from multiple domains of life, which are integral to the ability of SSFs to purify water. While cultivation-independent analyses of the prokaryotic communities of SSFs have provided valuable insights, little attention has been paid to fungi inhabiting SSFs. This study characterized the fungal communities in the sand biofilm of one established, one inoculated and one non-inoculated SSF. The removal of the top-layer of sand (“scraping”) allowed fungal communities in the top and subsurface layers of sand to be analyzed using amplicon sequencing of the ITS2 region of fungal rRNA genes.</div><div>The top layers of SSF sand contained fungal communities dominated by phylum <em>Ascomycota</em> (43.5–75.6 %). After scraping, high abundances (&gt;70 %) of phylum <em>Rozellomycota</em> were revealed in the established filter. These fungi were also detected in an inoculated filter, but not in a non-inoculated filter, suggesting potential dispersal to new filters by inoculation. The diverse <em>Rozellomycota</em> sequences potentially represented 6 different order-level clades, with most being related to previously observed Branch03 <em>Rozellomycota</em>. Their roles in SSF function are unknown but may be related to the removal of indicator bacteria as this phylum includes potential parasites of grazing eukaryotes. Fungi known to constitute microbial risk or contribute to micropollutant biodegradation were in low abundance and only sporadically detected. Lifestyle traits could be predicted for 61.8 % of fungi in the SSF biofilm; most of these were saprotrophic microfungi or yeasts.</div><div>This study presents an overview of the composition of fungal communities in full-scale SSF, and their potential interactions with water quality. It also highlights the need for more knowledge regarding the ecology of “dark matter”-fungi, such as <em>Rozellomycota</em>, and presents an accessible and societally relevant environment for future research of these microbes.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"279 ","pages":"Article 123447"},"PeriodicalIF":11.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425003604","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Slow sand filters (SSFs) for drinking water production are habitats for diverse microbes from multiple domains of life, which are integral to the ability of SSFs to purify water. While cultivation-independent analyses of the prokaryotic communities of SSFs have provided valuable insights, little attention has been paid to fungi inhabiting SSFs. This study characterized the fungal communities in the sand biofilm of one established, one inoculated and one non-inoculated SSF. The removal of the top-layer of sand (“scraping”) allowed fungal communities in the top and subsurface layers of sand to be analyzed using amplicon sequencing of the ITS2 region of fungal rRNA genes.
The top layers of SSF sand contained fungal communities dominated by phylum Ascomycota (43.5–75.6 %). After scraping, high abundances (>70 %) of phylum Rozellomycota were revealed in the established filter. These fungi were also detected in an inoculated filter, but not in a non-inoculated filter, suggesting potential dispersal to new filters by inoculation. The diverse Rozellomycota sequences potentially represented 6 different order-level clades, with most being related to previously observed Branch03 Rozellomycota. Their roles in SSF function are unknown but may be related to the removal of indicator bacteria as this phylum includes potential parasites of grazing eukaryotes. Fungi known to constitute microbial risk or contribute to micropollutant biodegradation were in low abundance and only sporadically detected. Lifestyle traits could be predicted for 61.8 % of fungi in the SSF biofilm; most of these were saprotrophic microfungi or yeasts.
This study presents an overview of the composition of fungal communities in full-scale SSF, and their potential interactions with water quality. It also highlights the need for more knowledge regarding the ecology of “dark matter”-fungi, such as Rozellomycota, and presents an accessible and societally relevant environment for future research of these microbes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Machine learning strategy secures urban smart drinking water treatment plant through incremental advances Estimation of organic carbon source composition and riverine outflow using an integrated watershed hydrological–carbon modelling approach Molecular identification of heterotrophic nitrification and aerobic denitrification bacteria: From methods development to application demonstration Single-atom Fe-decorated N-doped porous carbon from waste biomass as a high-performance air-cathode for wastewater treatment in microbial fuel cells Identifying groundwater anthropogenic disturbances and their predominant impact on microbial nitrogen cycling at a former contamination site adjacent to Baiyangdian Lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1