Robust and elastic composite aerogel fiber constructed from three-dimensional embedding of silica aerogel particles in nanoporous agarose

IF 4.5 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2025-03-08 DOI:10.1016/j.polymer.2025.128239
Jiajia Ren , Lipeng Liu , Qiqi Song , Pengjie Jiang , Yuxiang Du , Jiahui Wang , Yinghui Liu , Rui Fu , Huazheng Sai
{"title":"Robust and elastic composite aerogel fiber constructed from three-dimensional embedding of silica aerogel particles in nanoporous agarose","authors":"Jiajia Ren ,&nbsp;Lipeng Liu ,&nbsp;Qiqi Song ,&nbsp;Pengjie Jiang ,&nbsp;Yuxiang Du ,&nbsp;Jiahui Wang ,&nbsp;Yinghui Liu ,&nbsp;Rui Fu ,&nbsp;Huazheng Sai","doi":"10.1016/j.polymer.2025.128239","DOIUrl":null,"url":null,"abstract":"<div><div>Aerogel fibers inherit the advantages of the aerogel and fiber materials, such as good flexibility, low density, and high porosity, and are promising for producing wearable thermal insulation textiles for harsh environments. Nevertheless, the practical application of the three-dimensional (3D) network structures of aerogel fibers is hindered by their poor mechanical properties owing to the nanoporous structure. In this work, we produced composite aerogel fibers (CAFs) by combining SiO<sub>2</sub> gel slurry derived from coal fly ash with agarose and polyurea using wet-spinning and supercritical-drying technologies. In the CAFs, small SiO<sub>2</sub> aerogel particles existed in agarose nanofiber network to form an embedded structure. The synergic effects between the fragile SiO<sub>2</sub> gel skeleton and soft agarose nanofiber gel skeleton endow the CAFs with excellent elasticity, showing considerable of elastic recovery even after radial compression under 40 % strain, thus also helping to overcome some limitations of fragile SiO<sub>2</sub> aerogels and soft agarose nanofiber aerogels in practical applications. Surface modification of aerogel fiber with polyurea not only endows it with ideal hydrophobicity (water contact angle: 130°), but also enhances its tensile resistance (∼2.5 MPa). Furthermore, the aerogel fibers exhibit high specific surface area (∼182 m<sup>2</sup>/g) and low thermal conductivity (0.027 W m<sup>−1</sup> K<sup>−1</sup>). Hence, this study constructs the microstructure of silica embedded in the agarose fiber network to obtain SiO<sub>2</sub>/agarose/polyurea CAFs (SAP-CAFs) with excellent performance, which will promote their application in the field of clothing fabrics in extreme temperature and humid environments.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"324 ","pages":"Article 128239"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125002253","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Aerogel fibers inherit the advantages of the aerogel and fiber materials, such as good flexibility, low density, and high porosity, and are promising for producing wearable thermal insulation textiles for harsh environments. Nevertheless, the practical application of the three-dimensional (3D) network structures of aerogel fibers is hindered by their poor mechanical properties owing to the nanoporous structure. In this work, we produced composite aerogel fibers (CAFs) by combining SiO2 gel slurry derived from coal fly ash with agarose and polyurea using wet-spinning and supercritical-drying technologies. In the CAFs, small SiO2 aerogel particles existed in agarose nanofiber network to form an embedded structure. The synergic effects between the fragile SiO2 gel skeleton and soft agarose nanofiber gel skeleton endow the CAFs with excellent elasticity, showing considerable of elastic recovery even after radial compression under 40 % strain, thus also helping to overcome some limitations of fragile SiO2 aerogels and soft agarose nanofiber aerogels in practical applications. Surface modification of aerogel fiber with polyurea not only endows it with ideal hydrophobicity (water contact angle: 130°), but also enhances its tensile resistance (∼2.5 MPa). Furthermore, the aerogel fibers exhibit high specific surface area (∼182 m2/g) and low thermal conductivity (0.027 W m−1 K−1). Hence, this study constructs the microstructure of silica embedded in the agarose fiber network to obtain SiO2/agarose/polyurea CAFs (SAP-CAFs) with excellent performance, which will promote their application in the field of clothing fabrics in extreme temperature and humid environments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在纳米多孔琼脂糖中三维嵌入二氧化硅气凝胶颗粒构建的坚固弹性复合气凝胶纤维
气凝胶纤维继承了气凝胶和纤维材料柔韧性好、密度低、孔隙率高等优点,是生产恶劣环境下可穿戴保温纺织品的理想材料。然而,由于纳米孔结构,气凝胶纤维的三维网络结构的力学性能较差,阻碍了其实际应用。在这项工作中,我们通过湿纺和超临界干燥技术,将煤飞灰SiO2凝胶浆与琼脂糖和聚脲结合,制备复合气凝胶纤维(CAFs)。在CAFs中,小SiO2气凝胶颗粒存在于琼脂糖纳米纤维网络中,形成嵌入结构。脆弱的SiO2凝胶骨架和柔软的琼脂糖纳米纤维凝胶骨架之间的协同作用使碳纤维具有优异的弹性,即使在40%应变下径向压缩也有相当大的弹性恢复,从而也有助于克服脆弱的SiO2气凝胶和柔软的琼脂糖纳米纤维气凝胶在实际应用中的一些局限性。用聚脲对气凝胶纤维进行表面改性,不仅使其具有理想的疏水性(水接触角:130°),而且增强了其抗拉性能(~ 2.5 MPa)。此外,气凝胶纤维具有高比表面积(~ 182 m2/g)和低导热系数(0.027 W m−1 K−1)。因此,本研究构建了二氧化硅嵌入琼脂糖纤维网络的微观结构,获得了性能优异的SiO2/琼脂糖/聚脲CAFs (SAP-CAFs),这将促进其在极端温度和潮湿环境下服装面料领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Ethanol
阿拉丁
Acetonitrile
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
A Microphase-Separation Hydrogel with Superior Strength, Toughness, Puncture and Impact Resistance Data-driven models to explore regulatable variables for the density, thermal conductivity and compressive strength of rigid polyurethane foams Photoinduced Benzoyl Peroxide Activation for Highly Efficient Polymerization of 2,6-Dimethylphenol Synthesis of ultrahigh molecular weight poly(vinylidene fluoride) via emulsion polymerization initiated by the combination of silver nanoparticles with trichloroacetic acid The synthesis of antibacterial ZnO nanoparticle incorporated polyethersulfone (PES) membranes through green chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1