An electrochemical-mechanical synergistic regulation by constructing a double-layer fully active silicon-based alloy anode in sulfide all-solid-state batteries

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2025-03-08 DOI:10.1016/j.actamat.2025.120915
Yuting Huang , Shenghao Jing , Huaqing Shen , Sijia Li , YuXin Shen , Yuanyuan Lin , Ying Zhang , Zongliang Zhang , Yang Liu , Yongle Chen , Fangyang Liu , Yang Lu
{"title":"An electrochemical-mechanical synergistic regulation by constructing a double-layer fully active silicon-based alloy anode in sulfide all-solid-state batteries","authors":"Yuting Huang ,&nbsp;Shenghao Jing ,&nbsp;Huaqing Shen ,&nbsp;Sijia Li ,&nbsp;YuXin Shen ,&nbsp;Yuanyuan Lin ,&nbsp;Ying Zhang ,&nbsp;Zongliang Zhang ,&nbsp;Yang Liu ,&nbsp;Yongle Chen ,&nbsp;Fangyang Liu ,&nbsp;Yang Lu","doi":"10.1016/j.actamat.2025.120915","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon anode is one of the most promising anode materials for sulfide all-solid-state batteries (ASSBs) due to its high theoretical specific capacity of up to 4200 mAh g<sup>−1</sup>. However, raw silicon anodes suffer from their intrinsic limitations, including low ionic and electronic conductivity, as well as significant mechanical stress arising from large volume changes during cycling. These factors contribute to the poor cycle life of silicon-based ASSBs. Herein, a double-layer structure composed of lithium-rich Li<sub>4.4</sub>Si alloy layer and nano silicon (nSi) anode layer, is proposed to address these issues. The double-layer structure enriches Li<sub>4.4</sub>Si on the current collector side, serving as conductive lithium reservoir that improves the Li<sup>+</sup> transport and electron conductivity. The low elastic modulus of Li<sub>4.4</sub>Si alleviates the mechanical stress induced by volume changes in the silicon upper layer. Finite element analysis indicates that the double-layer design reduces interfacial stress by three times, ensuring effective interfacial contact and providing abundant Li⁺ transport pathways. The ASSBs employing the double layer silicon anode coupled with LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode exhibit exceptional cycle stability, achieving the capacity retention rate of 86.50 % after 200 cycles at 0.5 C. Furthermore, a remarkable cell-level energy density of 308.04 Wh kg<sup>−1</sup> was achieved at a high loading of 3.38 mAh cm<sup>−2</sup>. The double-layer Li<sub>4.4</sub>Si/nSi anode can be incorporated into pouch cells, demonstrating good cycling stability. This design holds significant potential for the transition of sulfide ASSBs from laboratory-scale development to industrial applications.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"289 ","pages":"Article 120915"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425002071","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon anode is one of the most promising anode materials for sulfide all-solid-state batteries (ASSBs) due to its high theoretical specific capacity of up to 4200 mAh g−1. However, raw silicon anodes suffer from their intrinsic limitations, including low ionic and electronic conductivity, as well as significant mechanical stress arising from large volume changes during cycling. These factors contribute to the poor cycle life of silicon-based ASSBs. Herein, a double-layer structure composed of lithium-rich Li4.4Si alloy layer and nano silicon (nSi) anode layer, is proposed to address these issues. The double-layer structure enriches Li4.4Si on the current collector side, serving as conductive lithium reservoir that improves the Li+ transport and electron conductivity. The low elastic modulus of Li4.4Si alleviates the mechanical stress induced by volume changes in the silicon upper layer. Finite element analysis indicates that the double-layer design reduces interfacial stress by three times, ensuring effective interfacial contact and providing abundant Li⁺ transport pathways. The ASSBs employing the double layer silicon anode coupled with LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode exhibit exceptional cycle stability, achieving the capacity retention rate of 86.50 % after 200 cycles at 0.5 C. Furthermore, a remarkable cell-level energy density of 308.04 Wh kg−1 was achieved at a high loading of 3.38 mAh cm−2. The double-layer Li4.4Si/nSi anode can be incorporated into pouch cells, demonstrating good cycling stability. This design holds significant potential for the transition of sulfide ASSBs from laboratory-scale development to industrial applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过构建硫化物全固态电池中的双层全活性硅基合金阳极实现电化学-机械协同调节
硅阳极具有高达4200 mAh g−1的理论比容量,是硫化物全固态电池(assb)最有前途的阳极材料之一。然而,原始硅阳极受到其固有局限性的影响,包括低离子和电子导电性,以及在循环过程中由大体积变化引起的显著机械应力。这些因素导致硅基assb的循环寿命较差。本文提出了一种由富锂锂4.4 si合金层和纳米硅(nSi)阳极层组成的双层结构来解决这些问题。双层结构富集了集流侧的Li4.4Si,作为导电锂储层,提高了Li+输运和电子导电性。Li4.4Si的低弹性模量减轻了硅上层体积变化引起的机械应力。有限元分析表明,双层设计使界面应力降低了三倍,保证了有效的界面接触,并提供了丰富的Li⁺传输途径。采用双层硅阳极和LiNi0.8Mn0.1Co0.1O2 (NCM811)阴极的assb表现出优异的循环稳定性,在0.5 c下进行200次循环后,容量保持率达到86.50%。此外,在3.38 mAh cm−2的高负载下,assb的电池级能量密度达到308.04 Wh kg−1。双层Li4.4Si/nSi阳极可以并入袋状电池中,具有良好的循环稳定性。这种设计对于硫化物assb从实验室规模发展到工业应用的转变具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
isobutyl isobutyrate
麦克林
nano-silicon (nSi)
麦克林
xylene
麦克林
xylene
阿拉丁
LiCl
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Flash sintering in oxides: the Debye temperature is not the limit Characterization and modeling of continuous dynamic recrystallization (CDRX): Application to 2139 aluminum alloy Thermodynamics of compositionally complex (“high-entropy”) oxides – A-site mixed (5R0.2)CoO3-δ (R = rare-earth element) perovskite-type cobaltites Multi-objective Topology Optimization of Ni–YSZ Anode Microstructure in Anode-Supported Solid Oxide Fuel Cells and Performance Analysis of Cell Grain size effect on segregation kinetics of B and Mo at the austenite grain boundary in Mo-B combined addition steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1