Elise Mills , Graeme F. Clark , Matthew J. Simpson , Mark Baird , Matthew P. Adams
{"title":"A generalised sigmoid population growth model with energy dependence: Application to quantify the tipping point for Antarctic shallow seabed algae","authors":"Elise Mills , Graeme F. Clark , Matthew J. Simpson , Mark Baird , Matthew P. Adams","doi":"10.1016/j.envsoft.2025.106397","DOIUrl":null,"url":null,"abstract":"<div><div>Sigmoid growth models are often used to study population dynamics. The size of a population at equilibrium commonly depends explicitly on the availability of resources, such as an energy or nutrient source, which is not explicit in standard sigmoid growth models. A simple generalised extension of sigmoid growth models is introduced that can explicitly account for this resource-dependence, demonstrated by three examples of this family of models of increasing mathematical complexity. Each model is calibrated and compared to observed data for algae under sea-ice in Antarctic coastal waters. It was found that through careful construction, models satisfying the proposed framework can estimate key properties of a sea-ice break-out controlled tipping point for the algae, which cannot be estimated using standard sigmoid growth models. The proposed broader family of energy-dependent sigmoid growth models likely has usage in many population growth contexts where resources limit population size.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106397"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000817","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Sigmoid growth models are often used to study population dynamics. The size of a population at equilibrium commonly depends explicitly on the availability of resources, such as an energy or nutrient source, which is not explicit in standard sigmoid growth models. A simple generalised extension of sigmoid growth models is introduced that can explicitly account for this resource-dependence, demonstrated by three examples of this family of models of increasing mathematical complexity. Each model is calibrated and compared to observed data for algae under sea-ice in Antarctic coastal waters. It was found that through careful construction, models satisfying the proposed framework can estimate key properties of a sea-ice break-out controlled tipping point for the algae, which cannot be estimated using standard sigmoid growth models. The proposed broader family of energy-dependent sigmoid growth models likely has usage in many population growth contexts where resources limit population size.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.