Akbar Bashir , Muhammad Maqbool , Ali Usman , Umer Younis , Abdul Zeeshan Khan , Ziqi Li , Chen Liu , Da-Zhu Chen , Shu-Lin Bai
{"title":"Emerging trends and challenges in thermal interface materials: A comprehensive perspective from fundamentals to applications","authors":"Akbar Bashir , Muhammad Maqbool , Ali Usman , Umer Younis , Abdul Zeeshan Khan , Ziqi Li , Chen Liu , Da-Zhu Chen , Shu-Lin Bai","doi":"10.1016/j.mser.2025.100968","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal interface materials (TIMs) are essential for efficient thermal management in modern electronics, reducing interfacial thermal resistance (ITR) and ensuring effective heat dissipation. Among the emerging two-dimensional (2D) materials, hexagonal boron nitride (h-BN) has gained considerable attention as a frontrunner due to its remarkable thermal conductivity (TC), robust chemical stability, and exceptional mechanical strength. This review provides an extensive overview of thermal conductance principles, highlighting state-of-the-art TC measurement techniques, and the factors influencing TIM performance. It delves into innovative fabrication strategies, focusing on the synthesis of boron nitride nanosheets (BNNS) and the design of three-dimensional (3D) interconnected, vertically aligned BN structures. These advanced methods facilitate the creation of continuous thermal pathways, significantly improving both in-plane and through-plane heat transfer. By overcoming critical performance bottlenecks, these techniques position BN-based TIMs at the forefront of thermal management solutions. Furthermore, the review explores their potential applications across high-performance sectors such as electronic packaging, battery thermal regulation, and wearable electronics domains where efficient heat dissipation is indispensable. In conclusion, this review not only identifies key research gaps but also provides strategic insights for advancing scalable, high-performance BN-based TIMs, ultimately positioning them as cornerstone components for next-generation thermal management technologies.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"164 ","pages":"Article 100968"},"PeriodicalIF":31.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000452","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal interface materials (TIMs) are essential for efficient thermal management in modern electronics, reducing interfacial thermal resistance (ITR) and ensuring effective heat dissipation. Among the emerging two-dimensional (2D) materials, hexagonal boron nitride (h-BN) has gained considerable attention as a frontrunner due to its remarkable thermal conductivity (TC), robust chemical stability, and exceptional mechanical strength. This review provides an extensive overview of thermal conductance principles, highlighting state-of-the-art TC measurement techniques, and the factors influencing TIM performance. It delves into innovative fabrication strategies, focusing on the synthesis of boron nitride nanosheets (BNNS) and the design of three-dimensional (3D) interconnected, vertically aligned BN structures. These advanced methods facilitate the creation of continuous thermal pathways, significantly improving both in-plane and through-plane heat transfer. By overcoming critical performance bottlenecks, these techniques position BN-based TIMs at the forefront of thermal management solutions. Furthermore, the review explores their potential applications across high-performance sectors such as electronic packaging, battery thermal regulation, and wearable electronics domains where efficient heat dissipation is indispensable. In conclusion, this review not only identifies key research gaps but also provides strategic insights for advancing scalable, high-performance BN-based TIMs, ultimately positioning them as cornerstone components for next-generation thermal management technologies.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.