Mass flow of PAHs and fragrance substances in the sedimentation tanks of conventional domestic wastewater treatment plant–trace organic chemicals passing through sedimentation tank

Noriatsu Ozaki, Yiwen Mao, Tomonori Kindaichi, Akiyoshi Ohashi
{"title":"Mass flow of PAHs and fragrance substances in the sedimentation tanks of conventional domestic wastewater treatment plant–trace organic chemicals passing through sedimentation tank","authors":"Noriatsu Ozaki,&nbsp;Yiwen Mao,&nbsp;Tomonori Kindaichi,&nbsp;Akiyoshi Ohashi","doi":"10.1016/j.clwat.2025.100074","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the behavior of trace organic pollutants, specifically fragrances (OTNE, HHCB, AHTN), caffeine, and polycyclic aromatic hydrocarbons (PAHs), within a conventional wastewater treatment plant (WWTP). By systematically quantifying sedimentation ratios across treatment stages, our findings reveal an unexpectedly low sedimentation efficiency for these hydrophobic trace pollutants, particularly in the final sedimentation tank. This phenomenon is linked to the removal efficiencies of suspended solids (SS), highlighting a previously underexplored aspect of sedimentation processes. Additionally, the study investigates the partitioning behaviors of these compounds between solid and liquid phases and provides insights into the role of secondary sedimentation in pollutant management. These findings address a critical gap in the literature by coupling sedimentation ratios with SS removal efficiencies, offering a novel perspective on the limitations of conventional WWTPs in handling hydrophobic pollutants. The results provide a foundation for future research aimed at optimizing sedimentation mechanisms and exploring advanced treatment strategies to improve pollutant removal efficiency and environmental protection.</div></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"3 ","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263225000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the behavior of trace organic pollutants, specifically fragrances (OTNE, HHCB, AHTN), caffeine, and polycyclic aromatic hydrocarbons (PAHs), within a conventional wastewater treatment plant (WWTP). By systematically quantifying sedimentation ratios across treatment stages, our findings reveal an unexpectedly low sedimentation efficiency for these hydrophobic trace pollutants, particularly in the final sedimentation tank. This phenomenon is linked to the removal efficiencies of suspended solids (SS), highlighting a previously underexplored aspect of sedimentation processes. Additionally, the study investigates the partitioning behaviors of these compounds between solid and liquid phases and provides insights into the role of secondary sedimentation in pollutant management. These findings address a critical gap in the literature by coupling sedimentation ratios with SS removal efficiencies, offering a novel perspective on the limitations of conventional WWTPs in handling hydrophobic pollutants. The results provide a foundation for future research aimed at optimizing sedimentation mechanisms and exploring advanced treatment strategies to improve pollutant removal efficiency and environmental protection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass flow of PAHs and fragrance substances in the sedimentation tanks of conventional domestic wastewater treatment plant–trace organic chemicals passing through sedimentation tank Adsorptive removal of organics and nutrients from septic tank effluent using oak wood chip biochar: Kinetic analysis and numerical modeling Cleaner waters ahead: Evaluating safe limits of rare earth elements (REEs) in Australian and global policies amid environmental interactions Hydraulic performance of BlueLay –a potential sustainable drainage material for mitigating urban road runoff Investigating the relationship between land use and water quality in urban water bodies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1