A generalized tail mean-variance model for optimal capital allocation

IF 1.9 2区 经济学 Q2 ECONOMICS Insurance Mathematics & Economics Pub Date : 2025-03-07 DOI:10.1016/j.insmatheco.2025.03.003
Yang Yang , Guojing Wang , Jing Yao , Hengyue Xie
{"title":"A generalized tail mean-variance model for optimal capital allocation","authors":"Yang Yang ,&nbsp;Guojing Wang ,&nbsp;Jing Yao ,&nbsp;Hengyue Xie","doi":"10.1016/j.insmatheco.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>Capital allocation is a core task in financial and actuarial risk management. Some well-known capital allocation principles, such as the “Euler principle” and the “haircut principle”, have been widely used in the banking and insurance industry. The partitions of allocated capital not only serve as a buffer against potential losses but also provide certain risk pricing and performance measurement to the underlying risks. <span><span>Dhaene et al. (2012)</span></span> proposed a unified distance-minimizing capital allocation framework. Their objective function in the optimization only considers the magnitude of the loss function but not the variability. In this paper, we propose a general tail mean-variance (GTMV) model, which employs the Bregman divergences to construct distance-minimizing functions, and takes both the magnitude and the variability into account. We prove the existence and uniqueness of the optimal allocation and provide the general system of equations that characterizes the optimal solution. In this context, we further introduce the Mahalanobis tail mean-variance (MTMV) model and provide explicit distribution-free optimal allocation formulas, which cover many existing results as special cases. In particular, we derive the parametric analytical solutions for multivariate generalized hyperbolic distributed risks. For multivariate log-generalized hyperbolic distributed non-negative risks, we use the convex approximation method to obtain explicit solutions. We present two numerical examples showing the good performance of our optimal capital allocation rules. The first one analyzes the market risk of S&amp;P 500 industry sector indices. We show that our optimal capital allocation framework is applicable to various scenario analyses and provides a performance measure for the indices and the financial market. The other example is based on insurance claims from an Australian insurance company, showing our approximate formulas are both robust and accurate.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"122 ","pages":"Pages 157-179"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016766872500040X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Capital allocation is a core task in financial and actuarial risk management. Some well-known capital allocation principles, such as the “Euler principle” and the “haircut principle”, have been widely used in the banking and insurance industry. The partitions of allocated capital not only serve as a buffer against potential losses but also provide certain risk pricing and performance measurement to the underlying risks. Dhaene et al. (2012) proposed a unified distance-minimizing capital allocation framework. Their objective function in the optimization only considers the magnitude of the loss function but not the variability. In this paper, we propose a general tail mean-variance (GTMV) model, which employs the Bregman divergences to construct distance-minimizing functions, and takes both the magnitude and the variability into account. We prove the existence and uniqueness of the optimal allocation and provide the general system of equations that characterizes the optimal solution. In this context, we further introduce the Mahalanobis tail mean-variance (MTMV) model and provide explicit distribution-free optimal allocation formulas, which cover many existing results as special cases. In particular, we derive the parametric analytical solutions for multivariate generalized hyperbolic distributed risks. For multivariate log-generalized hyperbolic distributed non-negative risks, we use the convex approximation method to obtain explicit solutions. We present two numerical examples showing the good performance of our optimal capital allocation rules. The first one analyzes the market risk of S&P 500 industry sector indices. We show that our optimal capital allocation framework is applicable to various scenario analyses and provides a performance measure for the indices and the financial market. The other example is based on insurance claims from an Australian insurance company, showing our approximate formulas are both robust and accurate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
期刊最新文献
Optimal reinsurance from an optimal transport perspective A generalized tail mean-variance model for optimal capital allocation Pricing insurance contracts with an existing portfolio as background risk The impact of intermediaries on insurance demand and pricing Self-protection under Nth-degree risk increase of random unit cost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1