Differential expression of genes related to tillering in lowland rice varieties cultivated under upland condition

IF 2.2 Q3 GENETICS & HEREDITY Plant Gene Pub Date : 2025-03-05 DOI:10.1016/j.plgene.2025.100498
Muazr Amer Hamzah , Parameswari Namasivayam , Nur Fatihah Mohd Yusoff , Chai-Ling Ho
{"title":"Differential expression of genes related to tillering in lowland rice varieties cultivated under upland condition","authors":"Muazr Amer Hamzah ,&nbsp;Parameswari Namasivayam ,&nbsp;Nur Fatihah Mohd Yusoff ,&nbsp;Chai-Ling Ho","doi":"10.1016/j.plgene.2025.100498","DOIUrl":null,"url":null,"abstract":"<div><div>Rice tillering is a key determinant of yield and is influenced by genetic, hormonal, and environmental factors. Building upon previous findings that upland conditions reduced tiller production in lowland rice varieties, this study investigated the differential expression of tillering-related genes in two lowland rice varieties, Kadaria and MR269, cultivated under upland and lowland conditions. The transcript abundance of genes involved in tillering, phytohormone biosynthesis, and stress response at the basal part of the rice plant was analyzed using the NanoString nCounter® system. The down-regulation of <em>PIN Protein 9</em> (<em>OsPIN9</em>) and up-regulation of <em>Dwarf 14</em> (<em>D14</em>) in both lowland rice varieties may lead to auxin accumulation and enhanced strigolactone signaling in rice plants cultivated under upland conditions, hence causing them to produce fewer tillers. In addition, the up-regulation of <em>Cytochrome P450 735A4</em> (<em>CYP735A4</em>), a gene involved in cytokinin biosynthesis, was also observed in rice plants cultivated under upland conditions. The differential expression of <em>LAX Panicle 2</em> (<em>LAX2</em>), <em>PIN Protein 1b</em> (<em>OsPIN1b</em>), <em>PIN Protein 2</em> (<em>OsPIN2</em>), and <em>Pyrabactin Resistance 1 Like</em>/<em>Regulatory Components of ABA Receptor 10</em> (<em>OsPYL</em>/<em>RCAR10</em>) was unique to specific rice varieties, suggesting varietal differences in tillering responses to a possible water stress imposed by the upland conditions. These findings contribute to the understanding of potential molecular pathways influencing tiller production in lowland rice varieties cultivated under water-limited upland conditions.</div></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"42 ","pages":"Article 100498"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407325000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Rice tillering is a key determinant of yield and is influenced by genetic, hormonal, and environmental factors. Building upon previous findings that upland conditions reduced tiller production in lowland rice varieties, this study investigated the differential expression of tillering-related genes in two lowland rice varieties, Kadaria and MR269, cultivated under upland and lowland conditions. The transcript abundance of genes involved in tillering, phytohormone biosynthesis, and stress response at the basal part of the rice plant was analyzed using the NanoString nCounter® system. The down-regulation of PIN Protein 9 (OsPIN9) and up-regulation of Dwarf 14 (D14) in both lowland rice varieties may lead to auxin accumulation and enhanced strigolactone signaling in rice plants cultivated under upland conditions, hence causing them to produce fewer tillers. In addition, the up-regulation of Cytochrome P450 735A4 (CYP735A4), a gene involved in cytokinin biosynthesis, was also observed in rice plants cultivated under upland conditions. The differential expression of LAX Panicle 2 (LAX2), PIN Protein 1b (OsPIN1b), PIN Protein 2 (OsPIN2), and Pyrabactin Resistance 1 Like/Regulatory Components of ABA Receptor 10 (OsPYL/RCAR10) was unique to specific rice varieties, suggesting varietal differences in tillering responses to a possible water stress imposed by the upland conditions. These findings contribute to the understanding of potential molecular pathways influencing tiller production in lowland rice varieties cultivated under water-limited upland conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
期刊最新文献
Differential expression of genes related to tillering in lowland rice varieties cultivated under upland condition Novel genetic control of alpha-amylase activity during pre-harvest sprouting indicated by RNA sequencing of soft winter wheat varieties Cardinal and Logan Decoding the evolution of dumbbell stomata: Insights from the developmental genes of sedges and grasses Transcriptome-guided selection of reference genes from field-grown adult trees and seedlings exposed to defense phytohormones in Erythrina velutina Development of a meiotic atlas and chromosomal mapping of abundant genome elements in the orphan crop golden thistle (Scolymus hispanicus L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1