Asymmetrical A-DA′D-A–type electron transport materials with enhanced electron mobility and water-resistant interface for perovskite solar cells

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2025-03-09 DOI:10.1016/j.solener.2025.113409
Qian Guo, Quan-Song Li
{"title":"Asymmetrical A-DA′D-A–type electron transport materials with enhanced electron mobility and water-resistant interface for perovskite solar cells","authors":"Qian Guo,&nbsp;Quan-Song Li","doi":"10.1016/j.solener.2025.113409","DOIUrl":null,"url":null,"abstract":"<div><div>Organic small-molecule electron transport materials (ETMs) exhibit fantastic potential in achieving high power conversion efficiency (PCE) of perovskite solar cells (PSCs). In this work, the novel asymmetric naphthalene diimide (NDI) derivatives were designed by fused-ring engineering and end-group engineering based on the symmetric NDI-based E molecule. These asymmetric NDI derivatives are designed by tuning thiophene units (A1, A2, and A3), introducing heteroatoms into the donor (B1, B2), and introducing asymmetric end groups (C1, C2, and C3). Quantum chemical calculations show that the energy levels of ETMs match well with MAPbI<sub>3</sub>. In addition, a strong linear correlation (R<sup>2</sup> &gt; 0.96) is observed between the LUMO energies, adiabatic electron affinities, and reorganization energies. Notably, the electron mobility of the asymmetric molecule B1 is enhanced by 16 times (0.851 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>) compared to the symmetric E molecule (0.053 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>). The calculation shows that the designed asymmetric molecules exhibit robust interaction with perovskite, and the Bader charge indicates enhanced electron injection from the perovskite to the ETM. Furthermore, molecular dynamics simulations verified that the asymmetric structure (A2 and C3) can effectively prevent water from invading the perovskite surface. This asymmetric molecular design strategy provides insights for designing novel ETM for high performance PSCs.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"291 ","pages":"Article 113409"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25001720","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Organic small-molecule electron transport materials (ETMs) exhibit fantastic potential in achieving high power conversion efficiency (PCE) of perovskite solar cells (PSCs). In this work, the novel asymmetric naphthalene diimide (NDI) derivatives were designed by fused-ring engineering and end-group engineering based on the symmetric NDI-based E molecule. These asymmetric NDI derivatives are designed by tuning thiophene units (A1, A2, and A3), introducing heteroatoms into the donor (B1, B2), and introducing asymmetric end groups (C1, C2, and C3). Quantum chemical calculations show that the energy levels of ETMs match well with MAPbI3. In addition, a strong linear correlation (R2 > 0.96) is observed between the LUMO energies, adiabatic electron affinities, and reorganization energies. Notably, the electron mobility of the asymmetric molecule B1 is enhanced by 16 times (0.851 cm2V−1s−1) compared to the symmetric E molecule (0.053 cm2V−1s−1). The calculation shows that the designed asymmetric molecules exhibit robust interaction with perovskite, and the Bader charge indicates enhanced electron injection from the perovskite to the ETM. Furthermore, molecular dynamics simulations verified that the asymmetric structure (A2 and C3) can effectively prevent water from invading the perovskite surface. This asymmetric molecular design strategy provides insights for designing novel ETM for high performance PSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙钛矿太阳能电池中具有增强电子迁移率和防水界面的非对称A-DA ' d - a型电子传输材料
有机小分子电子传输材料(ETMs)在实现钙钛矿太阳能电池(PSCs)的高功率转换效率(PCE)方面显示出巨大的潜力。本文在对称的萘二亚胺E分子的基础上,采用融合环工程和端基工程设计了新型的不对称萘二亚胺衍生物。这些不对称NDI衍生物是通过调整噻吩单元(A1, A2和A3),在供体中引入杂原子(B1, B2)和引入不对称端基(C1, C2和C3)来设计的。量子化学计算表明,etm的能级与MAPbI3匹配良好。此外,具有较强的线性相关(R2 >;在LUMO能量、绝热电子亲和能和重组能之间观察到0.96)。值得注意的是,不对称分子B1的电子迁移率(0.851 cm2V−1s−1)比对称分子E (0.053 cm2V−1s−1)提高了16倍。计算结果表明,所设计的不对称分子与钙钛矿具有较强的相互作用,Bader电荷表明钙钛矿向ETM的电子注入增强。此外,分子动力学模拟验证了不对称结构(A2和C3)可以有效地阻止水侵入钙钛矿表面。这种不对称分子设计策略为设计高性能psc的新型ETM提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Attention residual network with multi-scale convolution branch for efficient solar photovoltaic module defect classification Techno-economic analysis of PV-assisted alkaline water electrolysis hydrogen production system based on dynamic matching of electricity prices and solar irradiance Bionic marine seaweed evaporator for effective seawater desalination Advances and outlook of perovskite solar cells via spray coating technologies Classification, design, and selection strategies of volatile solid additives for organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1