Unlocking Cesium based new double absorber perovskite solar cells with efficiency above 28 % for next generation solar cell

IF 2.9 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2025-03-01 DOI:10.1016/j.photonics.2025.101371
Md. Ferdous Rahman , Md. Mahin Tasdid , Mohammed M. Fadhali , Mukul Sharma , Mehdi Akermi
{"title":"Unlocking Cesium based new double absorber perovskite solar cells with efficiency above 28 % for next generation solar cell","authors":"Md. Ferdous Rahman ,&nbsp;Md. Mahin Tasdid ,&nbsp;Mohammed M. Fadhali ,&nbsp;Mukul Sharma ,&nbsp;Mehdi Akermi","doi":"10.1016/j.photonics.2025.101371","DOIUrl":null,"url":null,"abstract":"<div><div>The limited photon absorption capacity of single-active-layer perovskite solar cells (PSCs) restricts their efficiency and scalability for future photovoltaic applications. This study introduces an innovative double perovskite active layer (DPAL) design, incorporating CsSnI<sub>3</sub> and CsPbI<sub>3</sub>, along with a cadmium sulfide (CdS) electron transport layer (ETL), to overcome these challenges. Using the SCAPS-1D simulation tool, we demonstrate that this novel configuration significantly improves performance, achieving a power conversion efficiency (PCE) of 28.74 %, an open-circuit voltage (V<sub>OC</sub>) of 0.996 V, a short-circuit current density (J<sub>SC</sub>) of 34.94 mA/cm², and a fill factor (FF) of 82.61 %. These results surpass the efficiencies of single-active-layer designs, which reach 17.84 % for CsPbI<sub>3</sub> and 24.08 % for CsSnI<sub>3</sub>. The study further explores the influence of active layer thickness, defect density, and interface defect densities on solar cell performance, along with the effects of doping concentration, series and shunt resistance, and temperature on PCE. This research highlights the potential of DPAL-based PSCs as a promising approach for achieving high-efficiency, stable, and cost-effective solar energy solutions.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101371"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000215","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The limited photon absorption capacity of single-active-layer perovskite solar cells (PSCs) restricts their efficiency and scalability for future photovoltaic applications. This study introduces an innovative double perovskite active layer (DPAL) design, incorporating CsSnI3 and CsPbI3, along with a cadmium sulfide (CdS) electron transport layer (ETL), to overcome these challenges. Using the SCAPS-1D simulation tool, we demonstrate that this novel configuration significantly improves performance, achieving a power conversion efficiency (PCE) of 28.74 %, an open-circuit voltage (VOC) of 0.996 V, a short-circuit current density (JSC) of 34.94 mA/cm², and a fill factor (FF) of 82.61 %. These results surpass the efficiencies of single-active-layer designs, which reach 17.84 % for CsPbI3 and 24.08 % for CsSnI3. The study further explores the influence of active layer thickness, defect density, and interface defect densities on solar cell performance, along with the effects of doping concentration, series and shunt resistance, and temperature on PCE. This research highlights the potential of DPAL-based PSCs as a promising approach for achieving high-efficiency, stable, and cost-effective solar energy solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为下一代太阳能电池解锁效率在28% %以上的铯基新型双吸收钙钛矿太阳能电池
单活性层钙钛矿太阳能电池(PSCs)有限的光子吸收能力限制了其在未来光伏应用中的效率和可扩展性。本研究引入了一种创新的双钙钛矿活性层(DPAL)设计,结合CsSnI3和CsPbI3,以及硫化镉(CdS)电子传输层(ETL),以克服这些挑战。利用scps - 1d仿真工具,我们证明了这种新型配置显著提高了性能,功率转换效率(PCE)为28.74 %,开路电压(VOC)为0.996 V,短路电流密度(JSC)为34.94 mA/cm²,填充因子(FF)为82.61 %。这些结果超过了单活性层设计的效率,CsPbI3达到17.84 %,CsSnI3达到24.08 %。该研究进一步探讨了有源层厚度、缺陷密度和界面缺陷密度对太阳能电池性能的影响,以及掺杂浓度、串联和并联电阻以及温度对PCE的影响。该研究强调了基于dpal的PSCs作为实现高效、稳定和具有成本效益的太阳能解决方案的有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
期刊最新文献
Multifunctional dynamically tunable metasurface for wavefront manipulation based on vanadium dioxide and spin-decoupling mechanism Optical properties and localized surface plasmon resonance tuning of Al/AlSb core-shell nanorods Editorial Board Overcoming MIM limitations: An ultra-broadband Ti-Si₃N₄ bilayer metamaterial absorber for solar energy harvesting Optimizing C60 electron-transport layer thickness for improvement of charge dynamics and efficiency in inverted MAPbI₃ perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1