Xinglin Gao, Jun Li, Zhang Liu, Qianying Guo, Yuan Huang, Zumin Wang
{"title":"Synergistic strengthening of copper matrix composites with carbides of different aspect ratios","authors":"Xinglin Gao, Jun Li, Zhang Liu, Qianying Guo, Yuan Huang, Zumin Wang","doi":"10.1016/j.compositesa.2025.108848","DOIUrl":null,"url":null,"abstract":"<div><div>Copper matrix composites, known for their high strength, derive their desirable mechanical properties from strengthening effects of reinforcement. However, a single reinforcement provides a limitation of improvement in strength at the expense of plasticity. A strategy of synergistic improvement of strength and plasticity has been developed by incorporating two reinforcements with different aspect ratios. To this end, WC nanoparticles and SiC whiskers-reinforced copper matrix composites (WC<sub>p</sub>-SiC<sub>w</sub>/Cu) were prepared by intermittent pulsed electrodeposition and spark plasma sintering. These composites are designed with a unique core-shell structure, and thereby the agglomeration of reinforcements can be effectively avoided during sintering. As a result, the yield strength (323 MPa) of the WC<sub>p</sub>-SiC<sub>w</sub>/Cu is about double that of pure copper, while maintaining a high uniform elongation (15.3 %). The synergistic strengthening of the composites arises from the complementary advantages of the SiC<sub>w</sub>(s) and WC<sub>p</sub>(s). The results provide a promising route to preparing composites with comprehensive mechanical properties.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"193 ","pages":"Article 108848"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001423","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Copper matrix composites, known for their high strength, derive their desirable mechanical properties from strengthening effects of reinforcement. However, a single reinforcement provides a limitation of improvement in strength at the expense of plasticity. A strategy of synergistic improvement of strength and plasticity has been developed by incorporating two reinforcements with different aspect ratios. To this end, WC nanoparticles and SiC whiskers-reinforced copper matrix composites (WCp-SiCw/Cu) were prepared by intermittent pulsed electrodeposition and spark plasma sintering. These composites are designed with a unique core-shell structure, and thereby the agglomeration of reinforcements can be effectively avoided during sintering. As a result, the yield strength (323 MPa) of the WCp-SiCw/Cu is about double that of pure copper, while maintaining a high uniform elongation (15.3 %). The synergistic strengthening of the composites arises from the complementary advantages of the SiCw(s) and WCp(s). The results provide a promising route to preparing composites with comprehensive mechanical properties.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.