{"title":"Sustainable use of fly ash waste in tire tread rubber: Characterization of physical properties and environmental impact assessment","authors":"Hassarutai Yangthong , Papawarin Udomsin , Siriwan Jansinak , Supitta Suethao , Kheng Lim Goh , Wirasak Smitthipong","doi":"10.1016/j.wasman.2025.114737","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the use of fly ash (FA), a waste material, to partially replace zinc oxide (ZnO) as an activator in tire tread processing. Reducing ZnO addresses its environmental risks, particularly the impact of ZnO leakage into aquatic ecosystems throughout the tire’s life cycle. The FA was altered by including rubber compound with and without ZnO, using ZnO-to-FA ratios of 3:0 (control), 2:1, 1:2, 0:3, or 0:5 parts per hundred of rubber (phr). The results show that crosslinking of the rubber compound occurred with FA, even in the absence of ZnO. Notably, sample recipes with ZnO-to-FA ratios of 2:1 and 1:2 phr had similar Δ torque values to the control (3:0), allowing for ZnO reductions of 33.7% and 67.0%, respectively. This effectiveness is likely due to metal oxides in FA, such as CaO, MgO, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub>, which support the vulcanization process. Additionally, tensile strength and modulus remained unchanged. Elemental analysis further indicated that a ZnO-to-FA ratio of 1:2 reduced zinc release by 63.0% compared to the control recipe. A gate-to-gate life cycle assessment revealed that replacing ZnO with FA in vulcanized rubber formulations reduces environmental impacts, with the lowest effects observed at the 0:3 ZnO:FA ratio, though higher FA content may increase impacts. Using FA as a partial replacement for ZnO in tire tread processing shows promise for reducing environmental impact in tire manufacturing by lowering zinc release, decreasing ecotoxicity, and promoting waste reduction through the recycling of fly ash.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"200 ","pages":"Article 114737"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25001369","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the use of fly ash (FA), a waste material, to partially replace zinc oxide (ZnO) as an activator in tire tread processing. Reducing ZnO addresses its environmental risks, particularly the impact of ZnO leakage into aquatic ecosystems throughout the tire’s life cycle. The FA was altered by including rubber compound with and without ZnO, using ZnO-to-FA ratios of 3:0 (control), 2:1, 1:2, 0:3, or 0:5 parts per hundred of rubber (phr). The results show that crosslinking of the rubber compound occurred with FA, even in the absence of ZnO. Notably, sample recipes with ZnO-to-FA ratios of 2:1 and 1:2 phr had similar Δ torque values to the control (3:0), allowing for ZnO reductions of 33.7% and 67.0%, respectively. This effectiveness is likely due to metal oxides in FA, such as CaO, MgO, Al2O3, and Fe2O3, which support the vulcanization process. Additionally, tensile strength and modulus remained unchanged. Elemental analysis further indicated that a ZnO-to-FA ratio of 1:2 reduced zinc release by 63.0% compared to the control recipe. A gate-to-gate life cycle assessment revealed that replacing ZnO with FA in vulcanized rubber formulations reduces environmental impacts, with the lowest effects observed at the 0:3 ZnO:FA ratio, though higher FA content may increase impacts. Using FA as a partial replacement for ZnO in tire tread processing shows promise for reducing environmental impact in tire manufacturing by lowering zinc release, decreasing ecotoxicity, and promoting waste reduction through the recycling of fly ash.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)