Biobased comb polyurethane hot-melt adhesives consisting of dangling fatty acid chains and H-bonds for tailoring bonding strength

IF 6.3 2区 化学 Q1 POLYMER SCIENCE European Polymer Journal Pub Date : 2025-03-04 DOI:10.1016/j.eurpolymj.2025.113880
Zhen Huang , Shimin Geng , Yizhen Chen , Ying Li , Mingen Fei , Renhui Qiu , Tingting Chen , Wendi Liu
{"title":"Biobased comb polyurethane hot-melt adhesives consisting of dangling fatty acid chains and H-bonds for tailoring bonding strength","authors":"Zhen Huang ,&nbsp;Shimin Geng ,&nbsp;Yizhen Chen ,&nbsp;Ying Li ,&nbsp;Mingen Fei ,&nbsp;Renhui Qiu ,&nbsp;Tingting Chen ,&nbsp;Wendi Liu","doi":"10.1016/j.eurpolymj.2025.113880","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional polyurethane hot-melt adhesives often fall short in achieving high bonding strength and recyclability, and their dependence on non-renewable resources poses a significant hurdle for sustainable development. In this study, a palm oil-based diethanolamide (POEA) containing a long aliphatic chain was synthesized to develop comb thermoplastic polyurethane hot-melt adhesives (POPUs) with high biobased content, superior adhesion strength, and reusability. The microphase separation structure of POPUs was manipulated through the incorporation of dangling fatty acid chains and hydrogen bonds, resulting in the adhesives with excellent mechanical properties, with an optimum tensile strength of 5.37 MPa and an elongation at break of 282 %. As a hot-melt adhesive, it achieved a maximum lap-shear strength of 7.34 MPa on steel and maintained an average strength of 95 % of its initial value across multiple bonding cycles. Moreover, its lap-shear strengths with wood and glass remained at 6.57 MPa and 3.57 MPa respectively, fully meeting the requirements for interior decoration. Additionally, it was unexpectedly discovered that the adhesives possessed fluorescence characteristics, which can be applied in fields such as cultural relic restoration and anti-counterfeiting.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"229 ","pages":"Article 113880"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725001685","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional polyurethane hot-melt adhesives often fall short in achieving high bonding strength and recyclability, and their dependence on non-renewable resources poses a significant hurdle for sustainable development. In this study, a palm oil-based diethanolamide (POEA) containing a long aliphatic chain was synthesized to develop comb thermoplastic polyurethane hot-melt adhesives (POPUs) with high biobased content, superior adhesion strength, and reusability. The microphase separation structure of POPUs was manipulated through the incorporation of dangling fatty acid chains and hydrogen bonds, resulting in the adhesives with excellent mechanical properties, with an optimum tensile strength of 5.37 MPa and an elongation at break of 282 %. As a hot-melt adhesive, it achieved a maximum lap-shear strength of 7.34 MPa on steel and maintained an average strength of 95 % of its initial value across multiple bonding cycles. Moreover, its lap-shear strengths with wood and glass remained at 6.57 MPa and 3.57 MPa respectively, fully meeting the requirements for interior decoration. Additionally, it was unexpectedly discovered that the adhesives possessed fluorescence characteristics, which can be applied in fields such as cultural relic restoration and anti-counterfeiting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物基梳状聚氨酯热熔胶,由悬垂的脂肪酸链和氢键组成,可调整粘合强度
传统的聚氨酯热熔胶在高粘接强度和可回收性方面往往存在不足,对不可再生资源的依赖严重阻碍了其可持续发展。在本研究中,合成了一种含有长脂肪链的棕榈油基二乙醇酰胺(POEA),用于开发具有高生物基含量、优异粘合强度和可重复使用性的梳状热塑性聚氨酯热熔胶(popu)。通过加入悬垂脂肪酸链和氢键来调控POPUs的微相分离结构,得到了具有优异力学性能的胶黏剂,其最佳抗拉强度为5.37 MPa,断裂伸长率为282%。作为热熔胶,它对钢的最大搭剪强度为7.34 MPa,在多次粘接循环中平均强度保持在初始值的95%。与木材和玻璃的搭剪强度分别保持在6.57 MPa和3.57 MPa,完全满足室内装饰的要求。此外,出乎意料地发现胶粘剂具有荧光特性,可用于文物修复和防伪等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
ethyl acetate
阿拉丁
N, N-dimethylformamide
阿拉丁
dibutyltin dilaurate
阿拉丁
sodium chloride
阿拉丁
sodium methoxide
阿拉丁
2-(2-hydroxyethylamino)ethanol
阿拉丁
N, N'-bis(2-hydroxyethyl)oxamide
阿拉丁
Hexamethylene diisocyanate
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
期刊最新文献
High heat-resistant transparent poly(amide-imide)s based on diacyl chloride containing imide and cyclohexane structures by ortho-methyl side group effect New conductive elastomers based on aliphatic polycarbonate and polymeric deep eutectic solvent for flexible wearable sensors Molecular engineering of polyhydrazides: a unified framework for tunable white-light emission, thermal robustness, and high-performance dye adsorption Amine and carboxylate functionalisation of silicate compounds and their effects when incorporated into alginate films Future clinical dressings for chronic wound repair: Pioneer strategies for accelerated angiogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1