Experimental and reliability assessment of fire resistance of glue laminated timber beams

Satheeskumar Navaratnam , Thisari Munmulla , Pathmanthan Rajeev , Thusiyanthan Ponnampalam , Solomon Tesfamariam
{"title":"Experimental and reliability assessment of fire resistance of glue laminated timber beams","authors":"Satheeskumar Navaratnam ,&nbsp;Thisari Munmulla ,&nbsp;Pathmanthan Rajeev ,&nbsp;Thusiyanthan Ponnampalam ,&nbsp;Solomon Tesfamariam","doi":"10.1016/j.rcns.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Glue-laminated timber (GLT) is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties. However, the fire performance of GLT varies significantly due to the natural and uncertain phenomena (moisture, exposure time, isotropic, homogenous properties, etc.) of fire and timber. This makes it difficult to predict the fire behaviour of the GLT structural elements. To ensure building safety, it is crucial to assess GLT's fire behaviour and post-fire structural integrity during the design stages. This study conducted the experimental tests of GLT beams (280 mm × 560 mm) without loading (1.4 m) and under a four-point bending load (5.4 m). Tests identified thermal behaviour and charring rates of GLT beam. Then, the residual stiffness of the GLT beam was calculated, and the charring rates of the beams were compared with Australian and European standards. Reliability analysis was conducted for beams for a fire exposure of 120 min, considering the charring rates observed through the analysis and simulating the fire insulations. Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min, with a mean rate of 0.7 mm/min, aligning with both Australian and European standards. However, considering timber density and moisture content, the charring rates in Australian standards were conservative. The study also found that structural capacity significantly degrades under fire, with a 22 % reduction in flexural stiffness after 120 min of exposure. Additionally, GLT beams can safely function for 30 min under 75 % of their design moment capacity and for 60 min under 50 % capacity.</div></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"4 1","pages":"Pages 101-114"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741625000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glue-laminated timber (GLT) is an engineered wood product widely used in mass timber construction for its strong structural and fire-resistant properties. However, the fire performance of GLT varies significantly due to the natural and uncertain phenomena (moisture, exposure time, isotropic, homogenous properties, etc.) of fire and timber. This makes it difficult to predict the fire behaviour of the GLT structural elements. To ensure building safety, it is crucial to assess GLT's fire behaviour and post-fire structural integrity during the design stages. This study conducted the experimental tests of GLT beams (280 mm × 560 mm) without loading (1.4 m) and under a four-point bending load (5.4 m). Tests identified thermal behaviour and charring rates of GLT beam. Then, the residual stiffness of the GLT beam was calculated, and the charring rates of the beams were compared with Australian and European standards. Reliability analysis was conducted for beams for a fire exposure of 120 min, considering the charring rates observed through the analysis and simulating the fire insulations. Results show that the charring rate of GLT made with spruce pine timber varied between 0.43 and 0.81 mm/min, with a mean rate of 0.7 mm/min, aligning with both Australian and European standards. However, considering timber density and moisture content, the charring rates in Australian standards were conservative. The study also found that structural capacity significantly degrades under fire, with a 22 % reduction in flexural stiffness after 120 min of exposure. Additionally, GLT beams can safely function for 30 min under 75 % of their design moment capacity and for 60 min under 50 % capacity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Seismic resilience design of prefabricated modular pressurized buildings Experimental and reliability assessment of fire resistance of glue laminated timber beams A robustness assessment approach for transportation networks with cyber-physical interdependencies Digital twin-based resilience evaluation and intelligent strategies of smart urban water distribution networks for emergency management An integrated decision-making approach to resilience–LCC Bridge network retrofitting using a genetic algorithm-based framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1