Detection of Aspergillus flavus contamination in peanut kernels using a hybrid convolutional transformer-feature fusion network: A macro-micro integrated hyperspectral imaging approach and two-dimensional correlation spectroscopy analysis
Zhen Guo , Haifang Wang , Fernando A. Auat-Cheein , Zhishang Ren , Lianming Xia , Ibrahim A. Darwish , Yemin Guo , Xia Sun
{"title":"Detection of Aspergillus flavus contamination in peanut kernels using a hybrid convolutional transformer-feature fusion network: A macro-micro integrated hyperspectral imaging approach and two-dimensional correlation spectroscopy analysis","authors":"Zhen Guo , Haifang Wang , Fernando A. Auat-Cheein , Zhishang Ren , Lianming Xia , Ibrahim A. Darwish , Yemin Guo , Xia Sun","doi":"10.1016/j.postharvbio.2025.113489","DOIUrl":null,"url":null,"abstract":"<div><div><em>Aspergillus flavus</em> contamination in peanut kernels poses significant health risks and economic losses, hence requiring accurate and fast detection methods to ensure postharvest safety and quality. This study investigated the detection of <em>Aspergillus flavus</em> contamination in peanut kernels using visible-near infrared (VNIR) hyperspectral imaging and hyperspectral microscopic imaging (HMI). The research explored the structural damage to peanut kernel cells and tissue caused by contamination, as revealed through both electron microscopy and hyperspectral imaging. Generalized two-dimensional correlation spectroscopy analysis was applied to determine the sequence of molecular changes, providing insights into fungal metabolism. The spatial-spectral features of the peanut kernels and peanut kernel sections were extracted, and a hybrid convolutional transformer-feature fusion network (HCT-FFN) was employed for features integration and classification. The model demonstrated superior accuracy compared to classic deep learning models, with test accuracy of 100.00 % for both VNIR hyperspectral imaging and HMI. Using smaller regions of interest in peanut kernel sections maintained high accuracy and improved the efficiency of the model. The study concluded that <em>Aspergillus flavus</em> contamination significantly altered peanut kernel structure and spectral properties. The HCT-FFN model proved highly effective for detecting and classifying contamination with minimal computational costs, highlighting its potential as a valuable tool for ensuring the safety and quality of postharvest nuts.</div></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"225 ","pages":"Article 113489"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521425001012","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aspergillus flavus contamination in peanut kernels poses significant health risks and economic losses, hence requiring accurate and fast detection methods to ensure postharvest safety and quality. This study investigated the detection of Aspergillus flavus contamination in peanut kernels using visible-near infrared (VNIR) hyperspectral imaging and hyperspectral microscopic imaging (HMI). The research explored the structural damage to peanut kernel cells and tissue caused by contamination, as revealed through both electron microscopy and hyperspectral imaging. Generalized two-dimensional correlation spectroscopy analysis was applied to determine the sequence of molecular changes, providing insights into fungal metabolism. The spatial-spectral features of the peanut kernels and peanut kernel sections were extracted, and a hybrid convolutional transformer-feature fusion network (HCT-FFN) was employed for features integration and classification. The model demonstrated superior accuracy compared to classic deep learning models, with test accuracy of 100.00 % for both VNIR hyperspectral imaging and HMI. Using smaller regions of interest in peanut kernel sections maintained high accuracy and improved the efficiency of the model. The study concluded that Aspergillus flavus contamination significantly altered peanut kernel structure and spectral properties. The HCT-FFN model proved highly effective for detecting and classifying contamination with minimal computational costs, highlighting its potential as a valuable tool for ensuring the safety and quality of postharvest nuts.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.