Monitoring street-level improper dumpsites via a multi-modal and LLM-based framework

IF 11.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Resources Conservation and Recycling Pub Date : 2025-03-09 DOI:10.1016/j.resconrec.2025.108227
Siwei Zhang, Jun Ma, Feifeng Jiang
{"title":"Monitoring street-level improper dumpsites via a multi-modal and LLM-based framework","authors":"Siwei Zhang,&nbsp;Jun Ma,&nbsp;Feifeng Jiang","doi":"10.1016/j.resconrec.2025.108227","DOIUrl":null,"url":null,"abstract":"<div><div>Effective monitoring and management of urban improper dumpsites have become increasingly critical due to the rising volumes of solid waste and their adverse environmental and public health impacts. Identifying the locations and types of street-level dumpsites is a necessary first step for waste management; however, existing studies lack automated and accurate methods for detecting and categorizing these sites. As a result, governments face substantial labor and financial burdens in managing illegal dumping. To address these gaps, this study presents <em>MultiSense DumpSpotter</em>, a novel cascade model framework that integrates a multimodal deep learning architecture with Large Language Models (LLMs) to identify, classify, and analyze improper dumpsites with greater accuracy than traditional unimodal vision models. To support this framework, we developed <em>UrbanDumpSight</em>, the first annotated street-level urban dumpsite dataset, consisting of over 4000 street view images with metadata that includes geospatial and demographic information. This study contribute to the literature by demonstrating the effectiveness of multimodal data fusion in urban studies and the potential of LLMs in interpreting urban semantics. From a practical standpoint, it introduces a deployable, user-friendly system designed to meet the needs of urban managers, enabling efficient monitoring of improper dumping hotspots, uncovering root causes, and facilitating the implementation of effective governance actions. Overall, this research provides a novel and scalable solution for addressing urban waste challenges, offering insights to support sustainable waste management and policy-making.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"218 ","pages":"Article 108227"},"PeriodicalIF":11.2000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344925001065","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Effective monitoring and management of urban improper dumpsites have become increasingly critical due to the rising volumes of solid waste and their adverse environmental and public health impacts. Identifying the locations and types of street-level dumpsites is a necessary first step for waste management; however, existing studies lack automated and accurate methods for detecting and categorizing these sites. As a result, governments face substantial labor and financial burdens in managing illegal dumping. To address these gaps, this study presents MultiSense DumpSpotter, a novel cascade model framework that integrates a multimodal deep learning architecture with Large Language Models (LLMs) to identify, classify, and analyze improper dumpsites with greater accuracy than traditional unimodal vision models. To support this framework, we developed UrbanDumpSight, the first annotated street-level urban dumpsite dataset, consisting of over 4000 street view images with metadata that includes geospatial and demographic information. This study contribute to the literature by demonstrating the effectiveness of multimodal data fusion in urban studies and the potential of LLMs in interpreting urban semantics. From a practical standpoint, it introduces a deployable, user-friendly system designed to meet the needs of urban managers, enabling efficient monitoring of improper dumping hotspots, uncovering root causes, and facilitating the implementation of effective governance actions. Overall, this research provides a novel and scalable solution for addressing urban waste challenges, offering insights to support sustainable waste management and policy-making.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Resources Conservation and Recycling
Resources Conservation and Recycling 环境科学-工程:环境
CiteScore
22.90
自引率
6.10%
发文量
625
审稿时长
23 days
期刊介绍: The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns. Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.
期刊最新文献
Exploring the strategic potential for Switzerland to reduce nitrogen and phosphorus surplus in agriculture The relative benefits of electrification, energy efficiency, and line drying clothes in the United States Greenhouse gas emissions of tomato production and supply: A systematic review Monitoring street-level improper dumpsites via a multi-modal and LLM-based framework Resource curse or blessing? A city-level analysis of economic and demographic impacts along the Belt and Road
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1