{"title":"Subjective-probability forecasts of existential risk: Initial results from a hybrid persuasion-forecasting tournament","authors":"Ezra Karger , Josh Rosenberg , Zachary Jacobs , Molly Hickman , Phillip E. Tetlock","doi":"10.1016/j.ijforecast.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>A multi-stage persuasion-forecasting tournament asked specialists and generalists (“superforecasters”) to explain their probability judgments of short- and long-run existential threats to humanity. Specialists were more pessimistic, especially on long-run threats posed by artificial intelligence (AI). Despite incentives to share their best arguments during four months of discussion, neither side materially moved the other’s views. This would be puzzling if participants were Bayesian agents methodically sifting through elusive clues about distant futures but it is less puzzling if participants were boundedly rational agents searching for confirmatory evidence as the risks of embarrassing accuracy feedback receded. Consistent with the latter mechanism, strong AI-risk proponents made particularly extreme long- but not short-range forecasts and over-estimated the long-range AI-risk forecasts of others. We stress the potential of these methods to inform high-stakes debates, but we acknowledge limits on what even skilled forecasters can achieve in anticipating rare or unprecedented events.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 499-516"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024001250","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-stage persuasion-forecasting tournament asked specialists and generalists (“superforecasters”) to explain their probability judgments of short- and long-run existential threats to humanity. Specialists were more pessimistic, especially on long-run threats posed by artificial intelligence (AI). Despite incentives to share their best arguments during four months of discussion, neither side materially moved the other’s views. This would be puzzling if participants were Bayesian agents methodically sifting through elusive clues about distant futures but it is less puzzling if participants were boundedly rational agents searching for confirmatory evidence as the risks of embarrassing accuracy feedback receded. Consistent with the latter mechanism, strong AI-risk proponents made particularly extreme long- but not short-range forecasts and over-estimated the long-range AI-risk forecasts of others. We stress the potential of these methods to inform high-stakes debates, but we acknowledge limits on what even skilled forecasters can achieve in anticipating rare or unprecedented events.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.