Le Zhen , Elina Quiroga , Sharon A. Creason , Ningjing Chen , Tanmay R. Sapre , Jessica M. Snyder , Sarah L. Lindhartsen , Brendy S. Fountaine , Michael C. Barbour , Syed Faisal , Alberto Aliseda , Brian W. Johnson , Jonathan Himmelfarb , Buddy D. Ratner
{"title":"Synthetic vascular graft that heals and regenerates","authors":"Le Zhen , Elina Quiroga , Sharon A. Creason , Ningjing Chen , Tanmay R. Sapre , Jessica M. Snyder , Sarah L. Lindhartsen , Brendy S. Fountaine , Michael C. Barbour , Syed Faisal , Alberto Aliseda , Brian W. Johnson , Jonathan Himmelfarb , Buddy D. Ratner","doi":"10.1016/j.biomaterials.2025.123206","DOIUrl":null,"url":null,"abstract":"<div><div>Millions of synthetic vascular grafts (sVG) are needed annually to address vascular diseases (a leading cause of death in humans) and kidney failure (as vascular access). However, in 70+ years since the first sVG in humans, we still do not have sVGs that fully endothelialize (the “holy grail” for truly successful grafts). The lack of healthy endothelium is believed to be a main cause for thrombosis, stenosis, and infection (the major reasons for graft failure). The immune-mediated foreign body response to traditional sVG materials encapsulates the materials in fibrotic scar suppressing vascularized healing. Here, we describe the first sVG optimized for vessel wall vascularization via uniform, spherical 40 μm pores. This sVG induced unprecedented rapid healing of luminal endothelium in a demanding and clinically relevant sheep model, probably by attracting and modulating macrophages and foreign body giant cells towards diverse, pro-healing phenotypes. Both this sVG and the control (PTFE grafts) remained 100 % patent during the implantation period. This advancement has broad implications beyond sVGs in tissue engineering and biocompatibility.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"320 ","pages":"Article 123206"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001255","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Millions of synthetic vascular grafts (sVG) are needed annually to address vascular diseases (a leading cause of death in humans) and kidney failure (as vascular access). However, in 70+ years since the first sVG in humans, we still do not have sVGs that fully endothelialize (the “holy grail” for truly successful grafts). The lack of healthy endothelium is believed to be a main cause for thrombosis, stenosis, and infection (the major reasons for graft failure). The immune-mediated foreign body response to traditional sVG materials encapsulates the materials in fibrotic scar suppressing vascularized healing. Here, we describe the first sVG optimized for vessel wall vascularization via uniform, spherical 40 μm pores. This sVG induced unprecedented rapid healing of luminal endothelium in a demanding and clinically relevant sheep model, probably by attracting and modulating macrophages and foreign body giant cells towards diverse, pro-healing phenotypes. Both this sVG and the control (PTFE grafts) remained 100 % patent during the implantation period. This advancement has broad implications beyond sVGs in tissue engineering and biocompatibility.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.