Phase-resolved analysis of velocity field structure and vorticity dynamics under colinear swell and wind-waves

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2025-03-06 DOI:10.1016/j.coastaleng.2025.104736
Fabio Addona , Maria Clavero , Luca Chiapponi , Sandro Longo
{"title":"Phase-resolved analysis of velocity field structure and vorticity dynamics under colinear swell and wind-waves","authors":"Fabio Addona ,&nbsp;Maria Clavero ,&nbsp;Luca Chiapponi ,&nbsp;Sandro Longo","doi":"10.1016/j.coastaleng.2025.104736","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this study is to analyze the turbulence field generated by the interaction between mechanical waves and colinear wind-waves in the liquid domain just below the free surface. Detailed three-dimensional velocity measurements close to the surface are decomposed into mean, swell, wind-waves, and turbulence contributions. In this work, we treat wind-waves as macroscale turbulence with a pseudo-random velocity field. Advanced data analysis yields phase-resolved and vertical examinations of wind-waves and turbulence stresses, kinetic energy, and vorticity. The results indicate that near the surface, the spanwise energy dominates both the wind-wave and the turbulence kinetic energy. The wind-waves and turbulence stress tensors exhibit a large anisotropy when swell waves are present, as a consequence of the interaction between swell and wind-waves. Furthermore, we present the spatio-temporal distribution of vorticity, and we elucidate the non-trivial interaction between vorticity and the flow field. This interaction results in body forces that contribute to the local variation in inertia, as described by the Navier–Stokes equation. It is observed that in all combinations, a body force acts, on average, downward, modifying the gradient pressure in the vertical direction.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"199 ","pages":"Article 104736"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000419","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study is to analyze the turbulence field generated by the interaction between mechanical waves and colinear wind-waves in the liquid domain just below the free surface. Detailed three-dimensional velocity measurements close to the surface are decomposed into mean, swell, wind-waves, and turbulence contributions. In this work, we treat wind-waves as macroscale turbulence with a pseudo-random velocity field. Advanced data analysis yields phase-resolved and vertical examinations of wind-waves and turbulence stresses, kinetic energy, and vorticity. The results indicate that near the surface, the spanwise energy dominates both the wind-wave and the turbulence kinetic energy. The wind-waves and turbulence stress tensors exhibit a large anisotropy when swell waves are present, as a consequence of the interaction between swell and wind-waves. Furthermore, we present the spatio-temporal distribution of vorticity, and we elucidate the non-trivial interaction between vorticity and the flow field. This interaction results in body forces that contribute to the local variation in inertia, as described by the Navier–Stokes equation. It is observed that in all combinations, a body force acts, on average, downward, modifying the gradient pressure in the vertical direction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
Phase-resolved analysis of velocity field structure and vorticity dynamics under colinear swell and wind-waves RoadRAT – A new framework to assess the probability of inundation, wave runup, and erosion impacting coastal roads Submerged and emerged rigid vegetation impact on bedforms and sediment suspension under wave action The wavefront shift method for bay beaches Longitudinal and vertical evolution of wave-induced turbulence within vegetation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1