Assessment of the efficacy of an antimicrobial peptide in the context of cystic fibrosis airways

IF 4.8 Q1 MICROBIOLOGY Current Research in Microbial Sciences Pub Date : 2025-01-01 DOI:10.1016/j.crmicr.2025.100367
Albane Jouault , Inès Jeguirim , Inès Ben Hadj Kaddour , Lhousseine Touqui
{"title":"Assessment of the efficacy of an antimicrobial peptide in the context of cystic fibrosis airways","authors":"Albane Jouault ,&nbsp;Inès Jeguirim ,&nbsp;Inès Ben Hadj Kaddour ,&nbsp;Lhousseine Touqui","doi":"10.1016/j.crmicr.2025.100367","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial peptides (AMPs) offer a promising alternative to control airway infections with multi-resistant bacteria, such as methicillin-resistant <em>Staphylococcus aureus</em> (MRSA), which commonly infects patients with cystic fibrosis (CF). However, the behavior of AMPs in the CF context has yet to be fully elucidated. CF airways produce large amounts of proteases and viscous mucus (sputum), which may affect the efficacy of AMPs. The present work aimed to determine whether CF conditions affect the bactericidal efficacy of CAMA, a promising AMP known to kill clinical MRSA strains efficiently. Using a killing assay, we quantified CAMA bactericidal activity on a CF clinical MRSA strain in the presence of several compounds of CF airways, including sputum and bronchial epithelial cells (BECs). Our results indicate that CF sputum impairs the bactericidal efficacy of CAMA. Similar results were observed when CAMA was incubated with an artificial sputum medium (ASM). When used separately, sputum components (DNA, lipids, and mucins) reproduced the inhibitory effects of ASM. Additionally, the bactericidal efficacy of CAMA was also slightly altered when planktonic <em>S. aureus</em> strains were co-cultured with CF BECs. However, CAMA was not active against <em>S. aureus</em> cultured on BEC in biofilm mode, characteristic of chronic infections in CF patients. These findings suggest that although CAMA represents a promising tool to treat MRSA strains, the CF environment may impair the efficacy of this AMP. Identifying strategies to protect AMPs from the deleterious effects of CF sputum is a key priority.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100367"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266651742500029X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) offer a promising alternative to control airway infections with multi-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), which commonly infects patients with cystic fibrosis (CF). However, the behavior of AMPs in the CF context has yet to be fully elucidated. CF airways produce large amounts of proteases and viscous mucus (sputum), which may affect the efficacy of AMPs. The present work aimed to determine whether CF conditions affect the bactericidal efficacy of CAMA, a promising AMP known to kill clinical MRSA strains efficiently. Using a killing assay, we quantified CAMA bactericidal activity on a CF clinical MRSA strain in the presence of several compounds of CF airways, including sputum and bronchial epithelial cells (BECs). Our results indicate that CF sputum impairs the bactericidal efficacy of CAMA. Similar results were observed when CAMA was incubated with an artificial sputum medium (ASM). When used separately, sputum components (DNA, lipids, and mucins) reproduced the inhibitory effects of ASM. Additionally, the bactericidal efficacy of CAMA was also slightly altered when planktonic S. aureus strains were co-cultured with CF BECs. However, CAMA was not active against S. aureus cultured on BEC in biofilm mode, characteristic of chronic infections in CF patients. These findings suggest that although CAMA represents a promising tool to treat MRSA strains, the CF environment may impair the efficacy of this AMP. Identifying strategies to protect AMPs from the deleterious effects of CF sputum is a key priority.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
期刊最新文献
Human microbiome in post-acute COVID-19 syndrome (PACS) Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum Antibacterial potential and phytochemical analysis of two ethnomedicinally important plants The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in Acinetobacter baumannii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1