Recovery of valuable metals from spent hydrodesulfurization (HDS) catalysts: A comprehensive research review and specific industrial cases

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-03-10 DOI:10.1016/j.jenvman.2025.124920
Haoran Yu , Shuo Liu , Ali Yaraş , Battsengel Enkhchimeg , Linchao Hu , Wenyi Zhang , Mingguo Peng , Hasan Arslanoğlu , Linqiang Mao
{"title":"Recovery of valuable metals from spent hydrodesulfurization (HDS) catalysts: A comprehensive research review and specific industrial cases","authors":"Haoran Yu ,&nbsp;Shuo Liu ,&nbsp;Ali Yaraş ,&nbsp;Battsengel Enkhchimeg ,&nbsp;Linchao Hu ,&nbsp;Wenyi Zhang ,&nbsp;Mingguo Peng ,&nbsp;Hasan Arslanoğlu ,&nbsp;Linqiang Mao","doi":"10.1016/j.jenvman.2025.124920","DOIUrl":null,"url":null,"abstract":"<div><div>Spent hydrodesulfurization (HDS) catalysts, produced in the petroleum refining process, are usually classified in hazardous solid waste. Recovery of valuable metals from spent HDS catalyst not only reduce substantially environmental risk but is an important way to alleviate global resource shortages for high-valuable metals. This study reviews numerous references regarding to recovery valuable metals from spent HDS catalyst in last decades, and divided current methods into three processes: pretreatment, oxidation-leaching, and separation-purification processes. Roasting and solvent washing usually emerge as primary methods in the pretreatment process, and effectively eliminate the surface oily substances and sulfur. Sodium salt roasting-leaching are considered as higher efficient among all leaching methods. The application of organic acid in the leaching can separate valuable metals selectively and simplify subsequent purification steps. In separation-purification processes, solvent extraction is still a standout method to isolate challenging metals such as Mo, W and V. However, the burgeoning field of ion imprinting technology exhibits the promising potential. Additionally, Random Forest and XGBoost model are used to analyze reported methods to recovery Mo and Ni and predict the key factor to regulate recovery efficiency. The results show that Mo recovery process is depended on the spent HDS characteristics and solid-liquid ratio in leaching process, while Ni recovery processes is depended on the roasting time and roasting temperature. Finally, serval specific industrial cases on recycling valuable metals from spent HDS were given, and found that sodium salt roasting-water leaching process was still frequent used in practical application due to its characteristics of high efficiency and low cost.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"379 ","pages":"Article 124920"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725008965","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spent hydrodesulfurization (HDS) catalysts, produced in the petroleum refining process, are usually classified in hazardous solid waste. Recovery of valuable metals from spent HDS catalyst not only reduce substantially environmental risk but is an important way to alleviate global resource shortages for high-valuable metals. This study reviews numerous references regarding to recovery valuable metals from spent HDS catalyst in last decades, and divided current methods into three processes: pretreatment, oxidation-leaching, and separation-purification processes. Roasting and solvent washing usually emerge as primary methods in the pretreatment process, and effectively eliminate the surface oily substances and sulfur. Sodium salt roasting-leaching are considered as higher efficient among all leaching methods. The application of organic acid in the leaching can separate valuable metals selectively and simplify subsequent purification steps. In separation-purification processes, solvent extraction is still a standout method to isolate challenging metals such as Mo, W and V. However, the burgeoning field of ion imprinting technology exhibits the promising potential. Additionally, Random Forest and XGBoost model are used to analyze reported methods to recovery Mo and Ni and predict the key factor to regulate recovery efficiency. The results show that Mo recovery process is depended on the spent HDS characteristics and solid-liquid ratio in leaching process, while Ni recovery processes is depended on the roasting time and roasting temperature. Finally, serval specific industrial cases on recycling valuable metals from spent HDS were given, and found that sodium salt roasting-water leaching process was still frequent used in practical application due to its characteristics of high efficiency and low cost.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Enhancing short-term algal bloom forecasting through an anti-mimicking hybrid deep learning method Experimental investigation and molecular dynamics simulation for the effect of a novel Gemini cationic surfactant on gas coal wettability The community succession mechanisms and interactive dynamics of microorganisms under high salinity and alkalinity conditions during composting Source prevention or end-of-pipe treatment? Green public procurement and corporate environmental investment strategies Recovery of valuable metals from spent hydrodesulfurization (HDS) catalysts: A comprehensive research review and specific industrial cases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1