{"title":"Experimental and machine learning-based identification of a solar thermal system for domestic hot water and direct solar floor heating","authors":"Yassine Bouguergour , Sayeh Menhoudj , Abderrahmane Mejedoub Mokhtari , Karim Dehina , Abdelatif Zairi , Romain Mege , Mohammed-Hichem Benzaama","doi":"10.1016/j.csite.2025.105935","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the energy performance of a combined solar underfloor heating and domestic hot water (DHW) system using an innovative approach that combines experimental data and mathematical modeling. The PieceWise Affine Auto-Regressive eXogenous (PWARX) model was employed to identify discrete operational states and optimize the system’s performance. Three configurations were analyzed under winter conditions: (1) the solar underfloor heating system achieved 130 % energy coverage, maintaining stable temperatures between 17 °C and 19.5 °C; (2) the DHW system with a 300 L storage tank recorded a 71 % coverage, optimizing circulator operation and thermal energy storage; and (3) the combined system demonstrated synergy between the components, balancing energy production with a minimum coverage of 45 %.</div><div>The PWARX model identified four distinct operational states, correlating solar radiation with the system’s thermal response, providing insights for energy management and system optimization. The findings underline the potential of the PWARX model to enhance the design and efficiency of solar thermal systems. This study contributes to the energy transition by proposing effective and adaptable solutions for maximizing solar energy utilization in the residential sector.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"69 ","pages":"Article 105935"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25001959","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the energy performance of a combined solar underfloor heating and domestic hot water (DHW) system using an innovative approach that combines experimental data and mathematical modeling. The PieceWise Affine Auto-Regressive eXogenous (PWARX) model was employed to identify discrete operational states and optimize the system’s performance. Three configurations were analyzed under winter conditions: (1) the solar underfloor heating system achieved 130 % energy coverage, maintaining stable temperatures between 17 °C and 19.5 °C; (2) the DHW system with a 300 L storage tank recorded a 71 % coverage, optimizing circulator operation and thermal energy storage; and (3) the combined system demonstrated synergy between the components, balancing energy production with a minimum coverage of 45 %.
The PWARX model identified four distinct operational states, correlating solar radiation with the system’s thermal response, providing insights for energy management and system optimization. The findings underline the potential of the PWARX model to enhance the design and efficiency of solar thermal systems. This study contributes to the energy transition by proposing effective and adaptable solutions for maximizing solar energy utilization in the residential sector.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.