{"title":"Suppression of Dynamic Resistance Degradation in 1200-V GaN-on-Sapphire E-Mode GaN HEMTs by Drain-Side Thin p-GaN Design","authors":"Wenfeng Wang;Feng Zhou;Junfan Qian;Can Zou;Weizong Xu;Fangfang Ren;Dong Zhou;Dunjun Chen;Yuanyang Xia;Leke Wu;Yiheng Li;Tinggang Zhu;Youdou Zheng;Rong Zhang;Hai Lu","doi":"10.1109/TED.2025.3534746","DOIUrl":null,"url":null,"abstract":"Dynamic resistance degradation, which is severely affected by the trapping effect, is a critical challenge for lateral AlGaN/GaN power devices, especially when operating in high-voltage and high-frequency applications. In this brief, an enhancement-mode p-GaN gate HEMT with a drain-side thin p-GaN (DST) structural design is proposed. The DST design can suppress the dynamic resistance degradation by injecting holes from the drain-side p-GaN. Meanwhile, by thinning the p-GaN layer, the on-state current conduction characteristics of the DST-HEMT can be greatly improved. The thinning process of the drain-side p-GaN is carried out simultaneously with the source/drain ohmic contact region etching process, which is well compatible with the existing process platform. By performing circuit-level dynamic resistance testing, GaN-on-sapphire DST-HEMT achieves minimal dynamic resistance degradation under 1200-V <sc>off</small>-state bias conditions, which is comparable to the test results in vertical GaN-on-GaN devices. In addition, the dynamic switching capability of the device is also demonstrated. These results reveal the notable potential of GaN-on-sapphire DST-HEMTs for high-voltage and high-power applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 3","pages":"1537-1540"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10870363/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic resistance degradation, which is severely affected by the trapping effect, is a critical challenge for lateral AlGaN/GaN power devices, especially when operating in high-voltage and high-frequency applications. In this brief, an enhancement-mode p-GaN gate HEMT with a drain-side thin p-GaN (DST) structural design is proposed. The DST design can suppress the dynamic resistance degradation by injecting holes from the drain-side p-GaN. Meanwhile, by thinning the p-GaN layer, the on-state current conduction characteristics of the DST-HEMT can be greatly improved. The thinning process of the drain-side p-GaN is carried out simultaneously with the source/drain ohmic contact region etching process, which is well compatible with the existing process platform. By performing circuit-level dynamic resistance testing, GaN-on-sapphire DST-HEMT achieves minimal dynamic resistance degradation under 1200-V off-state bias conditions, which is comparable to the test results in vertical GaN-on-GaN devices. In addition, the dynamic switching capability of the device is also demonstrated. These results reveal the notable potential of GaN-on-sapphire DST-HEMTs for high-voltage and high-power applications.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.