Design of MoS2 NCFET Featuring Subthermodynamic Limit SS, No More Than 5 mV/V DIBR, and 0.8% Threshold Voltage Variation at 10-nm Channel Length: Modeling and Analysis

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2025-01-24 DOI:10.1109/TED.2025.3529407
Sanket Mitra;Chandrima Mondal;Abhijit Biswas
{"title":"Design of MoS2 NCFET Featuring Subthermodynamic Limit SS, No More Than 5 mV/V DIBR, and 0.8% Threshold Voltage Variation at 10-nm Channel Length: Modeling and Analysis","authors":"Sanket Mitra;Chandrima Mondal;Abhijit Biswas","doi":"10.1109/TED.2025.3529407","DOIUrl":null,"url":null,"abstract":"In this work, we present a design, model, and analysis for a multilayered transition metal dichalcogenide (TMD)-based negative capacitance (NC) FET that achieves a subthreshold swing (SS) well below the thermodynamic limit, a maximum drain-induced barrier rise (DIBR) of 5 mV/V, and a threshold voltage (<inline-formula> <tex-math>${V} _{\\text {th}}$ </tex-math></inline-formula>) roll-up confined within 0.8% at a 10-nm channel length, using hafnium zirconium oxide (Hf0.5Zr0.5O2) as the ferroelectric material. Various parameters are considered, including ferroelectric layer thickness (<inline-formula> <tex-math>${t} _{\\text {FE}}$ </tex-math></inline-formula>), coercive electric field (<inline-formula> <tex-math>${E} _{c}$ </tex-math></inline-formula>), remanent polarization (<inline-formula> <tex-math>${P} _{r}$ </tex-math></inline-formula>), number of molybdenum disulfide (MoS2) layers (N), equivalent front and buried oxide thicknesses (EOT<inline-formula> <tex-math>$_{\\mathbf {f}}$ </tex-math></inline-formula>, EOTb), channel length (L), and drain-source bias (<inline-formula> <tex-math>${V} _{\\text {DS}}$ </tex-math></inline-formula>). A surface-potential-based model, accounting for interfacial traps, is employed to compute performance parameters such as <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>, SS, and DIBR. The model is validated against simulation results and existing data. The capacitance matching is performed to ensure hysteresis-free and stable NC operation. Conditions for the ferroelectric parameters (<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>) and <inline-formula> <tex-math>${t}_{\\text {FE}}$ </tex-math></inline-formula> are derived to mitigate short-channel effects (SCEs). Optimization is carried out to achieve subthermodynamic SS while maintaining 5 mV/V DIBR and a <inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula> roll-up below 0.8%, with values recorded for various combinations of N, EOTf, EOTb, and <inline-formula> <tex-math>${V}_{\\text {DS}}$ </tex-math></inline-formula>. Unlike direct bandgap monolayer MoS2, multilayer MoS2, an indirect bandgap semiconductor, is preferred due to its lower interface-trapped charge density and augmented performance. The feasibility of the recorded <inline-formula> <tex-math>$\\alpha ~{t}_{\\text {FE}}$ </tex-math></inline-formula> values is verified against experimental results, and an empirical model is proposed to guide the selection of ferroelectric materials for specific <inline-formula> <tex-math>${t}_{\\text {FE}}$ </tex-math></inline-formula>.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 3","pages":"1476-1482"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10852540/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a design, model, and analysis for a multilayered transition metal dichalcogenide (TMD)-based negative capacitance (NC) FET that achieves a subthreshold swing (SS) well below the thermodynamic limit, a maximum drain-induced barrier rise (DIBR) of 5 mV/V, and a threshold voltage ( ${V} _{\text {th}}$ ) roll-up confined within 0.8% at a 10-nm channel length, using hafnium zirconium oxide (Hf0.5Zr0.5O2) as the ferroelectric material. Various parameters are considered, including ferroelectric layer thickness ( ${t} _{\text {FE}}$ ), coercive electric field ( ${E} _{c}$ ), remanent polarization ( ${P} _{r}$ ), number of molybdenum disulfide (MoS2) layers (N), equivalent front and buried oxide thicknesses (EOT $_{\mathbf {f}}$ , EOTb), channel length (L), and drain-source bias ( ${V} _{\text {DS}}$ ). A surface-potential-based model, accounting for interfacial traps, is employed to compute performance parameters such as ${V}_{\text {th}}$ , SS, and DIBR. The model is validated against simulation results and existing data. The capacitance matching is performed to ensure hysteresis-free and stable NC operation. Conditions for the ferroelectric parameters ( $\alpha $ ) and ${t}_{\text {FE}}$ are derived to mitigate short-channel effects (SCEs). Optimization is carried out to achieve subthermodynamic SS while maintaining 5 mV/V DIBR and a ${V}_{\text {th}}$ roll-up below 0.8%, with values recorded for various combinations of N, EOTf, EOTb, and ${V}_{\text {DS}}$ . Unlike direct bandgap monolayer MoS2, multilayer MoS2, an indirect bandgap semiconductor, is preferred due to its lower interface-trapped charge density and augmented performance. The feasibility of the recorded $\alpha ~{t}_{\text {FE}}$ values is verified against experimental results, and an empirical model is proposed to guide the selection of ferroelectric materials for specific ${t}_{\text {FE}}$ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE Transactions on Electron Devices Publication Information Corrections to “Stimulated Secondary Emission of Single-Photon Avalanche Diodes” Call for Papers: Journal of Lightwave Technology Special Issue on OFS-29 Call for Nominations for Editor-in-Chief: IEEE Transactions on Semiconductor Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1