{"title":"Sustainable bioproduction of triterpenoid sapogenins and meroterpenoids in a metabolically engineered medicinal mushroom†","authors":"Fidelis Azi, Xiaomei Dai, Yuxiang Hong, Liqing Yin, Mingsheng Dong and Peng Xu","doi":"10.1039/D4GC06275B","DOIUrl":null,"url":null,"abstract":"<p >Plant-derived oleanolic and ursolic acids are sought-after triterpenoid sapogenins used in modern curative and preventive medicines. Several plant species have been overexploited for triterpenoid sapogenin extraction. In this study, we reconfigured the metabolic fingerprints of <em>Ganoderma lucidum</em> and produced oleanolic and ursolic acids, ganoderic acids, and meroterpenoids. Oleanolic and ursolic acids were first synthesized in the medicinal mushroom by expressing amyrin-synthases and beta-amyrin 28-monooxygenase from plants. The production of sapogenin precursors (2,3-oxidosqualene) and ganoderic acid was enhanced by reconstructing the mushroom terpenoid biosynthetic pathway using a new terpenoid gene cluster recovered from the mycelium. Overexpression of the VeA–VelB velvet and LaeA proteins upregulated secondary metabolism and stimulated the hyperproduction of a renoprotective meroterpenoid. The VeA–VelB velvet and LaeA protein variants developed a radically distinctive yellow phenotype that has not yet been reported in any of the mushroom mycelial variants. CRISPR-AsCpf1-based lanosterol synthase editing repressed the competing ganoderic acid pathway and further enhanced 2,3-oxidosqualene accumulation and triterpenoid sapogenin biosynthesis. The oleanolic and ursolic acid titer reached 1.478 g L<small><sup>−1</sup></small> and 0.87 g L<small><sup>−1</sup></small>, respectively, when the fermentation conditions were optimized in a 5 L lab bioreactor. This study presents fascinating metabolic engineering strategies that remodel <em>Ganoderma</em>'s metabolic route and produce oleanolic acid, ursolic acid, ganoderic acids, and meroterpenoids. These new strains could replace wild plant species as a green source of triterpenoid sapogenins.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 11","pages":" 3108-3123"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc06275b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-derived oleanolic and ursolic acids are sought-after triterpenoid sapogenins used in modern curative and preventive medicines. Several plant species have been overexploited for triterpenoid sapogenin extraction. In this study, we reconfigured the metabolic fingerprints of Ganoderma lucidum and produced oleanolic and ursolic acids, ganoderic acids, and meroterpenoids. Oleanolic and ursolic acids were first synthesized in the medicinal mushroom by expressing amyrin-synthases and beta-amyrin 28-monooxygenase from plants. The production of sapogenin precursors (2,3-oxidosqualene) and ganoderic acid was enhanced by reconstructing the mushroom terpenoid biosynthetic pathway using a new terpenoid gene cluster recovered from the mycelium. Overexpression of the VeA–VelB velvet and LaeA proteins upregulated secondary metabolism and stimulated the hyperproduction of a renoprotective meroterpenoid. The VeA–VelB velvet and LaeA protein variants developed a radically distinctive yellow phenotype that has not yet been reported in any of the mushroom mycelial variants. CRISPR-AsCpf1-based lanosterol synthase editing repressed the competing ganoderic acid pathway and further enhanced 2,3-oxidosqualene accumulation and triterpenoid sapogenin biosynthesis. The oleanolic and ursolic acid titer reached 1.478 g L−1 and 0.87 g L−1, respectively, when the fermentation conditions were optimized in a 5 L lab bioreactor. This study presents fascinating metabolic engineering strategies that remodel Ganoderma's metabolic route and produce oleanolic acid, ursolic acid, ganoderic acids, and meroterpenoids. These new strains could replace wild plant species as a green source of triterpenoid sapogenins.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.