Pyrolysis gas chromatography mass spectrometry (py-GC/MS) revealed independent effects of precipitation and temperature on diversity and molecular composition of soil organic matter
{"title":"Pyrolysis gas chromatography mass spectrometry (py-GC/MS) revealed independent effects of precipitation and temperature on diversity and molecular composition of soil organic matter","authors":"Xiaofeng Tang, Chao Chang, Ming Li","doi":"10.1007/s12665-025-12180-w","DOIUrl":null,"url":null,"abstract":"<div><p>Responses of soil organic matter (SOM) to changes in temperature and precipitation were helpful to understanding biogeochemical processes in soils. In the current study, two groups of soil samples were used to distinguish the respective effects of precipitation and temperature on SOM. The first group was named as mean annual temperature (MAP) gradient group including 13 samples with similar mean annual temperature (MAT) (13.0–14.9 °C) but different MAP (71.4–1072.8 mm). The second group was named as MAT gradient group including 13 samples with high MAP (> 1000 mm) but different MAT (15.9–24.8 °C). The SOM molecular composition was analyzed by a pyrolysis gas chromatography mass spectrometry. Variance partitioning analysis showed that in the MAP gradient group the variation in SOM composition was only independently explained 1% and 6% by MAT and MAP, respectively, but jointly explained 28%. In the MAT gradient group, although MAP explained 22% variation in SOM composition, MAT and MAP together explained more than 51%. These results indicated that the effect of MAT alone on SOM was negligible in the MAP gradient group and MAT was the dominant influencing factor in MAT gradient group. In the MAP gradient group, SOC content and the proportion of lignin and nitrogen-containing compounds were significantly positively related to MAP. In the MAT gradient group, the proportion of aliphatic, aliphatic and terpenoid compounds was significantly positively related to MAT but the proportion of aromatic compounds was opposite. Structural equation modeling showed that MAP was significantly positively related to SOM molecular diversity and stability, and MAT was significantly negatively related to SOM stability.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12180-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Responses of soil organic matter (SOM) to changes in temperature and precipitation were helpful to understanding biogeochemical processes in soils. In the current study, two groups of soil samples were used to distinguish the respective effects of precipitation and temperature on SOM. The first group was named as mean annual temperature (MAP) gradient group including 13 samples with similar mean annual temperature (MAT) (13.0–14.9 °C) but different MAP (71.4–1072.8 mm). The second group was named as MAT gradient group including 13 samples with high MAP (> 1000 mm) but different MAT (15.9–24.8 °C). The SOM molecular composition was analyzed by a pyrolysis gas chromatography mass spectrometry. Variance partitioning analysis showed that in the MAP gradient group the variation in SOM composition was only independently explained 1% and 6% by MAT and MAP, respectively, but jointly explained 28%. In the MAT gradient group, although MAP explained 22% variation in SOM composition, MAT and MAP together explained more than 51%. These results indicated that the effect of MAT alone on SOM was negligible in the MAP gradient group and MAT was the dominant influencing factor in MAT gradient group. In the MAP gradient group, SOC content and the proportion of lignin and nitrogen-containing compounds were significantly positively related to MAP. In the MAT gradient group, the proportion of aliphatic, aliphatic and terpenoid compounds was significantly positively related to MAT but the proportion of aromatic compounds was opposite. Structural equation modeling showed that MAP was significantly positively related to SOM molecular diversity and stability, and MAT was significantly negatively related to SOM stability.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.