Sergio Hernández-García, Alfredo Cuesta-Infante, Dimitrios Makris, Antonio S. Montemayor
{"title":"Real-like synthetic sperm video generation from learned behaviors","authors":"Sergio Hernández-García, Alfredo Cuesta-Infante, Dimitrios Makris, Antonio S. Montemayor","doi":"10.1007/s10489-025-06407-3","DOIUrl":null,"url":null,"abstract":"<div><p>Computer-assisted sperm analysis is an open research problem, and a main challenge is how to test its performance. Deep learning techniques have boosted computer vision tasks to human-level accuracy, when sufficiently large labeled datasets were provided. However, when it comes to sperm (either human or not) there is lack of sufficient large datasets for training and testing deep learning systems. In this paper we propose a solution that provides access to countless fully annotated and realistic synthetic video sequences of sperm. Specifically, we introduce a parametric model of a spermatozoon, which is animated along a video sequence using a denoising diffusion probabilistic model. The resulting videos are then rendered with a photo-realistic appearance via a style transfer procedure using a CycleGAN. We validate our synthetic dataset by training a deep object detection model on it, achieving state-of-the-art performance once validated on real data. Additionally, an evaluation of the generated sequences revealed that the behavior of the synthetically generated spermatozoa closely resembles that of real ones.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06407-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06407-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-assisted sperm analysis is an open research problem, and a main challenge is how to test its performance. Deep learning techniques have boosted computer vision tasks to human-level accuracy, when sufficiently large labeled datasets were provided. However, when it comes to sperm (either human or not) there is lack of sufficient large datasets for training and testing deep learning systems. In this paper we propose a solution that provides access to countless fully annotated and realistic synthetic video sequences of sperm. Specifically, we introduce a parametric model of a spermatozoon, which is animated along a video sequence using a denoising diffusion probabilistic model. The resulting videos are then rendered with a photo-realistic appearance via a style transfer procedure using a CycleGAN. We validate our synthetic dataset by training a deep object detection model on it, achieving state-of-the-art performance once validated on real data. Additionally, an evaluation of the generated sequences revealed that the behavior of the synthetically generated spermatozoa closely resembles that of real ones.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.