TsDa-ASAM: Balancing efficiency and accuracy in coke image particle size segmentation via two-stage distillation-aware adaptive segment anything model

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-03-13 DOI:10.1007/s10489-025-06427-z
Yalin Wang, Yubin Peng, Xujie Tan, Yuqing Pan, Chenliang Liu
{"title":"TsDa-ASAM: Balancing efficiency and accuracy in coke image particle size segmentation via two-stage distillation-aware adaptive segment anything model","authors":"Yalin Wang,&nbsp;Yubin Peng,&nbsp;Xujie Tan,&nbsp;Yuqing Pan,&nbsp;Chenliang Liu","doi":"10.1007/s10489-025-06427-z","DOIUrl":null,"url":null,"abstract":"<div><p>Coke image segmentation is a crucial step in coke particle size control of the sintering process. However, due to the complexity of model architecture and the dense distribution of coke particles in the images, existing segmentation methods fail to satisfy the efficiency and accuracy requirements for coke image segmentation in industrial scenarios. To address these challenges, this paper proposes a two-stage distillation-aware adaptive segment anything model to balance efficiency and accuracy in coke image particle size segmentation, referred to as TsDa-ASAM. In the first stage, knowledge distillation methods are employed to distill the Segment Anything Model (SAM) into a lightweight model, explicitly focusing on enhancing segmentation efficiency. In the second stage, a domain knowledge injection strategy is formulated, which incorporates domain knowledge into the distillation model to effectively enhance the accuracy. Moreover, an adaptive prompt point selection algorithm is introduced to address the redundancy issue of prompt points in SAM, improving the efficiency of TsDa-ASAM. The effectiveness of TsDa-ASAM is validated through extensive experiments on the publicly available dataset SA-1B and the coke image dataset from industrial sites. After distillation and fine-tuning, the segmentation accuracy of the proposed model improved by 10%, and the segmentation efficiency of TsDa-ASAM was enhanced by 2 to 3 times with the integration of the adaptive prompt point selection algorithm. The experimental results have effectively demonstrated the potential of the proposed model in balancing accuracy and efficiency.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06427-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Coke image segmentation is a crucial step in coke particle size control of the sintering process. However, due to the complexity of model architecture and the dense distribution of coke particles in the images, existing segmentation methods fail to satisfy the efficiency and accuracy requirements for coke image segmentation in industrial scenarios. To address these challenges, this paper proposes a two-stage distillation-aware adaptive segment anything model to balance efficiency and accuracy in coke image particle size segmentation, referred to as TsDa-ASAM. In the first stage, knowledge distillation methods are employed to distill the Segment Anything Model (SAM) into a lightweight model, explicitly focusing on enhancing segmentation efficiency. In the second stage, a domain knowledge injection strategy is formulated, which incorporates domain knowledge into the distillation model to effectively enhance the accuracy. Moreover, an adaptive prompt point selection algorithm is introduced to address the redundancy issue of prompt points in SAM, improving the efficiency of TsDa-ASAM. The effectiveness of TsDa-ASAM is validated through extensive experiments on the publicly available dataset SA-1B and the coke image dataset from industrial sites. After distillation and fine-tuning, the segmentation accuracy of the proposed model improved by 10%, and the segmentation efficiency of TsDa-ASAM was enhanced by 2 to 3 times with the integration of the adaptive prompt point selection algorithm. The experimental results have effectively demonstrated the potential of the proposed model in balancing accuracy and efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
A comparison study of several strategies in multivariate time series clustering based on graph community detection Entropy guidance hierarchical rich-scale feature network for remote sensing image semantic segmentation of high resolution TsDa-ASAM: Balancing efficiency and accuracy in coke image particle size segmentation via two-stage distillation-aware adaptive segment anything model DiffusionLight:a multi-agent reinforcement learning approach for traffic signal control based on shortcut-diffusion model DARTS-EAST: an edge-adaptive selection with topology first differentiable architecture selection method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1