{"title":"One-pot synthesis of novel 5-(azidomethyl)-2-aryloxazole derivatives from propargylamide through Cu-catalyzed C–N bond formation","authors":"Saeed Yazdanseta, Mohammad Ghanbari","doi":"10.1007/s13738-024-03167-8","DOIUrl":null,"url":null,"abstract":"<div><p>A series of <i>N</i>-propargylarylamide derivatives were successfully transformed into novel 5-(azidomethyl)-2-aryloxazole systems bearing a single azide group. The transformation involved a two-step process: (1) synthesis of 5-(iodomethylene)-2-aryl-4,5-dihydrooxazoles, followed by (2) azide coupling with sodium azide (NaN₃). Additionally, a one-pot protocol was developed for the synthesis of triazole-methylene-oxazole derivatives, integrating <i>N</i>-iodosuccinimide (NIS)-mediated oxazole formation, azide coupling, and a subsequent click reaction. This streamlined approach demonstrated excellent overall efficiency, yielding products in 68–82% yield across a broad substrate scope. Notably, the entire reaction sequence could be conducted using a single precatalyst, significantly reducing reaction waste and enhancing both economic and environmental sustainability.</p><h3>Graphical abstract</h3><p>A series of <i>N</i>-propargylarylamide derivatives were transformed into the corresponding novel 5-(azidomethyl)-2-aryloxazole systems that bear one azide group. The two-step procedure consisted of a 5-(iodomethylene)-2-aryl-4,5-dihydrooxazole synthesis and a subsequent azide coupling with NaN<sub>3</sub>.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"22 3","pages":"535 - 544"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03167-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of N-propargylarylamide derivatives were successfully transformed into novel 5-(azidomethyl)-2-aryloxazole systems bearing a single azide group. The transformation involved a two-step process: (1) synthesis of 5-(iodomethylene)-2-aryl-4,5-dihydrooxazoles, followed by (2) azide coupling with sodium azide (NaN₃). Additionally, a one-pot protocol was developed for the synthesis of triazole-methylene-oxazole derivatives, integrating N-iodosuccinimide (NIS)-mediated oxazole formation, azide coupling, and a subsequent click reaction. This streamlined approach demonstrated excellent overall efficiency, yielding products in 68–82% yield across a broad substrate scope. Notably, the entire reaction sequence could be conducted using a single precatalyst, significantly reducing reaction waste and enhancing both economic and environmental sustainability.
Graphical abstract
A series of N-propargylarylamide derivatives were transformed into the corresponding novel 5-(azidomethyl)-2-aryloxazole systems that bear one azide group. The two-step procedure consisted of a 5-(iodomethylene)-2-aryl-4,5-dihydrooxazole synthesis and a subsequent azide coupling with NaN3.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.