Effect of Processing Conditions on the Structure and Properties of Poly(Trimethylene Terephthalate) Fibers and Nonwovens Produced in the Spunbonding Process

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Fibers and Polymers Pub Date : 2025-02-25 DOI:10.1007/s12221-025-00876-6
Aming Wang, Zeping Duan, Shihua Qin, Xiao Shen, Qingsheng Liu, Dawei Li, Bingyao Deng
{"title":"Effect of Processing Conditions on the Structure and Properties of Poly(Trimethylene Terephthalate) Fibers and Nonwovens Produced in the Spunbonding Process","authors":"Aming Wang,&nbsp;Zeping Duan,&nbsp;Shihua Qin,&nbsp;Xiao Shen,&nbsp;Qingsheng Liu,&nbsp;Dawei Li,&nbsp;Bingyao Deng","doi":"10.1007/s12221-025-00876-6","DOIUrl":null,"url":null,"abstract":"<div><p>Melt-spun poly(trimethylene terephthalate) (PTT) fibers are generally prepared by mechanical drawing. Herein, PTT fibers and nonwovens were prepared using spunbonding technology by air drawing. The surfaces of PTT fibers are smooth and their evenness is very uniform. When drawing air velocity increases from 0 to 16.5 m/s at mass throughput of 36.0 mL/min, crystallinity and tensile strength of fibers increase from 11.5 to 21.2% and from 53.9 ± 5.3 to 177.3 ± 18.7 MPa, respectively, while elongation at break of samples decreases from 675.2 ± 52.0 to 374.8 ± 37.2%. Comprehensive analysis indicates that PTT spunbond nonwoven achieves the best combination of different properties when drawing air velocity and bonding temperature are 14.0 m/s and 60 °C, respectively. Under this condition, pore size, tensile strength along machine direction, tensile strength cross machine direction, bursting strength, filtration efficiency for PM<sub>2.0</sub>, pressure drop, and porosity of nonwovens are 8.3 ± 1.9 μm, 5.88 ± 0.54 MPa, 6.49 ± 0.59 MPa, 0.110 ± 0.006 MPa, 92.2 ± 1.6%, 119 ± 14 Pa, and 68.2%, respectively. The prepared PTT spunbond nonwovens are potentially competitive in the fields of packaging and air filtration due to their pleasing comprehensive properties.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"26 3","pages":"1049 - 1060"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12221-025-00876-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-025-00876-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Melt-spun poly(trimethylene terephthalate) (PTT) fibers are generally prepared by mechanical drawing. Herein, PTT fibers and nonwovens were prepared using spunbonding technology by air drawing. The surfaces of PTT fibers are smooth and their evenness is very uniform. When drawing air velocity increases from 0 to 16.5 m/s at mass throughput of 36.0 mL/min, crystallinity and tensile strength of fibers increase from 11.5 to 21.2% and from 53.9 ± 5.3 to 177.3 ± 18.7 MPa, respectively, while elongation at break of samples decreases from 675.2 ± 52.0 to 374.8 ± 37.2%. Comprehensive analysis indicates that PTT spunbond nonwoven achieves the best combination of different properties when drawing air velocity and bonding temperature are 14.0 m/s and 60 °C, respectively. Under this condition, pore size, tensile strength along machine direction, tensile strength cross machine direction, bursting strength, filtration efficiency for PM2.0, pressure drop, and porosity of nonwovens are 8.3 ± 1.9 μm, 5.88 ± 0.54 MPa, 6.49 ± 0.59 MPa, 0.110 ± 0.006 MPa, 92.2 ± 1.6%, 119 ± 14 Pa, and 68.2%, respectively. The prepared PTT spunbond nonwovens are potentially competitive in the fields of packaging and air filtration due to their pleasing comprehensive properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加工条件对纺粘法生产的聚对苯二甲酸三乙酯纤维和无纺布的结构和性能的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
期刊最新文献
Novel Sandwich-Structured Flexible ANF/PMIA/ANF Composite Paper with Enhanced Breakdown Strength Preparation of MnO2@PP MB for Organic Dyes Removal Synthesis and Characterization of Chitin/Curcumin-Based Aqueous Polyurethanes for Textile Finishes Effect of Folding in Large-Tow Polyacrylonitrile Fibers on Microstructure and Properties of Pre-oxidation Fibers The Impact of Color Dyes used in Textile Face Masks on the Physicochemical Properties of the Fabric Surface and their Influence on the Biocontamination Risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1