{"title":"Event-Triggered Integral Reinforcement Learning Control Based on Recursive Terminal Sliding Mode","authors":"Chao Jia, Yashuai Li, Hongkun Wang, Zijian Song","doi":"10.1002/rnc.7800","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For a class of continuous-time non-linear systems with saturated input and unknown non-linear disturbance, a novel event-triggered integral reinforcement learning (IRL) control strategy based on recursive terminal sliding mode (RTSM) is proposed in this paper. Firstly, a novel performance index function is designed based on RTSM and a two-player zero-sum game, and the robust control problem with saturated input and unknown disturbance can be transformed into an optimal control problem. To avoid the requirement of drift dynamics, the IRL technique is introduced. Secondly, a critic neural network is used to approximate the optimal value function, which not only simplifies algorithm implementation structure, but also relaxes initial admissible control in the learning of neural network weights. Then, considering the event-triggered mechanism, the asymptotic stability of the closed-loop system and the uniformly ultimately boundedness of weight estimation errors are proved by utilizing the Lyapunov theory. Finally, simulation results illustrate the effectiveness of the proposed control method.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 6","pages":"2342-2353"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7800","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
For a class of continuous-time non-linear systems with saturated input and unknown non-linear disturbance, a novel event-triggered integral reinforcement learning (IRL) control strategy based on recursive terminal sliding mode (RTSM) is proposed in this paper. Firstly, a novel performance index function is designed based on RTSM and a two-player zero-sum game, and the robust control problem with saturated input and unknown disturbance can be transformed into an optimal control problem. To avoid the requirement of drift dynamics, the IRL technique is introduced. Secondly, a critic neural network is used to approximate the optimal value function, which not only simplifies algorithm implementation structure, but also relaxes initial admissible control in the learning of neural network weights. Then, considering the event-triggered mechanism, the asymptotic stability of the closed-loop system and the uniformly ultimately boundedness of weight estimation errors are proved by utilizing the Lyapunov theory. Finally, simulation results illustrate the effectiveness of the proposed control method.
期刊介绍:
Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.