{"title":"Performance Analysis of Optimized Active Cell Balancing Circuits in Lithium-Ion Battery Pack","authors":"Indra Singh Bisht, Roushan Kumar, Abhinav Sharma","doi":"10.1002/est2.70151","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The increasing need for reliable and efficient energy storage solutions has brought a strong focus on enhancing the performance of lithium-ion batteries (LIBs), especially for high-voltage applications like electric vehicles and renewable energy systems. Active cell balancing is essential for maintaining uniform charge distribution across cells, improving the lifespan, capacity, and safety of LIBs. The paper presents a comprehensive performance assessment of an optimized active cell balancing circuit based on a buck-boost converter. The research work proposes a novel approach for active balancing circuits, integrating advanced control algorithms and high-efficiency power electronic components for efficient and fast results. Simulation studies are undertaken in MATLAB-Simscape to estimate the effectiveness of the cell balancing model. Circuit performance across different load types shows slight variations. For resistive load, balancing occurs in 33 s at 71% state of charge (SOC), reaching 100% SOC in 242 s. For resistive and inductive load, balancing occurs in 32 s at 70% SOC, reaching full charge in 240 s, and for resistive, inductive, and capacitive load, balancing occurs in 33 s at 70% SOC, stretching to 100% SOC in 239 s. The study provides valuable insights into the design and implementation of high-performance active balancing circuits, paving the way for more reliable and efficient LIB packs.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing need for reliable and efficient energy storage solutions has brought a strong focus on enhancing the performance of lithium-ion batteries (LIBs), especially for high-voltage applications like electric vehicles and renewable energy systems. Active cell balancing is essential for maintaining uniform charge distribution across cells, improving the lifespan, capacity, and safety of LIBs. The paper presents a comprehensive performance assessment of an optimized active cell balancing circuit based on a buck-boost converter. The research work proposes a novel approach for active balancing circuits, integrating advanced control algorithms and high-efficiency power electronic components for efficient and fast results. Simulation studies are undertaken in MATLAB-Simscape to estimate the effectiveness of the cell balancing model. Circuit performance across different load types shows slight variations. For resistive load, balancing occurs in 33 s at 71% state of charge (SOC), reaching 100% SOC in 242 s. For resistive and inductive load, balancing occurs in 32 s at 70% SOC, reaching full charge in 240 s, and for resistive, inductive, and capacitive load, balancing occurs in 33 s at 70% SOC, stretching to 100% SOC in 239 s. The study provides valuable insights into the design and implementation of high-performance active balancing circuits, paving the way for more reliable and efficient LIB packs.