Cytotoxicity of Amyloid β1-42 Fibrils to Brain Immune Cells.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2025-03-08 DOI:10.1021/acschemneuro.4c00835
Mikhail Matveyenka, Mikhail Sholukh, Dmitry Kurouski
{"title":"Cytotoxicity of Amyloid β1-42 Fibrils to Brain Immune Cells.","authors":"Mikhail Matveyenka, Mikhail Sholukh, Dmitry Kurouski","doi":"10.1021/acschemneuro.4c00835","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive pathology that is linked to abrupt aggregation of amyloid β<sub>1-42</sub> (Aβ<sub>1-42</sub>) peptide in the central nervous system. Aβ<sub>1-42</sub> aggregation yields amyloid oligomers and fibrils, toxic protein aggregates that cause progressive neuronal degeneration in the frontal lobe of the brain. Although neurons remain the focus of AD for decades, a growing body of evidence suggests that the degeneration of immune cells in the brain can be the major cause of AD. However, the extent to which Aβ<sub>1-42</sub> aggregates are toxic to the major classes of immune cells in the brain remains unclear. In the current study, we examine the cytotoxic effects of Aβ<sub>1-42</sub> fibrils on macrophages, dendritic cells, and microglia. These cells play vitally important roles in development and homeostasis of the central nervous system. We found that Aβ<sub>1-42</sub> fibrils caused calcium release and enhanced levels of reactive oxygen species in macrophages, dendritic cells, and microglia as well as neurons. We also investigated the extent to which the lysozymes of these immune cells could alter the aggregation properties of Aβ<sub>1-42</sub>. Our results showed that lysosomes extracted from macrophages, dendritic cells, and microglia drastically accelerated Aβ<sub>1-42</sub> aggregation as well as altered cytotoxicity of these protein aggregates. These results indicate that impairment of immune cells in the brain can be a critically important aspect of neurodegenerative processes that are taking place upon the onset of AD.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00835","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a progressive pathology that is linked to abrupt aggregation of amyloid β1-42 (Aβ1-42) peptide in the central nervous system. Aβ1-42 aggregation yields amyloid oligomers and fibrils, toxic protein aggregates that cause progressive neuronal degeneration in the frontal lobe of the brain. Although neurons remain the focus of AD for decades, a growing body of evidence suggests that the degeneration of immune cells in the brain can be the major cause of AD. However, the extent to which Aβ1-42 aggregates are toxic to the major classes of immune cells in the brain remains unclear. In the current study, we examine the cytotoxic effects of Aβ1-42 fibrils on macrophages, dendritic cells, and microglia. These cells play vitally important roles in development and homeostasis of the central nervous system. We found that Aβ1-42 fibrils caused calcium release and enhanced levels of reactive oxygen species in macrophages, dendritic cells, and microglia as well as neurons. We also investigated the extent to which the lysozymes of these immune cells could alter the aggregation properties of Aβ1-42. Our results showed that lysosomes extracted from macrophages, dendritic cells, and microglia drastically accelerated Aβ1-42 aggregation as well as altered cytotoxicity of these protein aggregates. These results indicate that impairment of immune cells in the brain can be a critically important aspect of neurodegenerative processes that are taking place upon the onset of AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
The Use of Natural Volatile Compounds on the Fibrillation Domain of Amyloid Beta (GSNKGAIIGLM)─Towards Promising Agents to Combat Alzheimer's Disease. Cytotoxicity of Amyloid β1-42 Fibrils to Brain Immune Cells. Issue Publication Information Issue Editorial Masthead Acute Optogenetic Stimulation of Serotonin Neurons Reduces Cell Proliferation in the Dentate Gyrus of Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1