Himanshu Chhillar, Hoang Hung Nguyen, Pei-Min Yeh, Jonathan D G Jones, Pingtao Ding
{"title":"Modular mechanisms of immune priming and growth inhibition mediated by plant effector-triggered immunity.","authors":"Himanshu Chhillar, Hoang Hung Nguyen, Pei-Min Yeh, Jonathan D G Jones, Pingtao Ding","doi":"10.1016/j.celrep.2025.115394","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive activation of effector-triggered immunity (ETI) in plants inhibits plant growth and activates cell death. ETI mediated by intracellular Toll/interleukin-1 receptor/resistance protein (TIR) nucleotide-binding, leucine-rich repeat receptors (NLRs) involves two partially redundant signaling nodes in Arabidopsis, ENHANCED DISEASE SUSCEPTIBILITY 1-PHYTOALEXIN DEFICIENT 4-ACTIVATED DISEASE RESISTANCE 1 (EDS1-PAD4-ADR1) and EDS1-SENESCENCE-ASSOCIATED GENE 101-N REQUIREMENT GENE 1 (EDS1-SAG101-NRG1). Genetic and transcriptomic analyses show that EDS1-PAD4-ADR1 primarily enhances immune component abundance and is critical for limiting pathogen growth, whereas EDS1-SAG101-NRG1 mainly activates the hypersensitive response (HR) cell death but is dispensable for immune priming. This study enhances our understanding of the distinct contributions of these two signaling modules to ETI and suggests molecular principles and potential strategies for improving disease resistance in crops without compromising yield.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115394"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115394","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive activation of effector-triggered immunity (ETI) in plants inhibits plant growth and activates cell death. ETI mediated by intracellular Toll/interleukin-1 receptor/resistance protein (TIR) nucleotide-binding, leucine-rich repeat receptors (NLRs) involves two partially redundant signaling nodes in Arabidopsis, ENHANCED DISEASE SUSCEPTIBILITY 1-PHYTOALEXIN DEFICIENT 4-ACTIVATED DISEASE RESISTANCE 1 (EDS1-PAD4-ADR1) and EDS1-SENESCENCE-ASSOCIATED GENE 101-N REQUIREMENT GENE 1 (EDS1-SAG101-NRG1). Genetic and transcriptomic analyses show that EDS1-PAD4-ADR1 primarily enhances immune component abundance and is critical for limiting pathogen growth, whereas EDS1-SAG101-NRG1 mainly activates the hypersensitive response (HR) cell death but is dispensable for immune priming. This study enhances our understanding of the distinct contributions of these two signaling modules to ETI and suggests molecular principles and potential strategies for improving disease resistance in crops without compromising yield.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.