Genetically encoded biosensors as gateways to retrograde redox signalling in live plants.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-03-08 DOI:10.1093/jxb/eraf080
José M Ugalde, Andreas J Meyer
{"title":"Genetically encoded biosensors as gateways to retrograde redox signalling in live plants.","authors":"José M Ugalde, Andreas J Meyer","doi":"10.1093/jxb/eraf080","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryotic cells, protein supply to organelles varies depending on the stage of development and, in particular, on the exposure to environmental challenges. Adequate protein supply in terms of quality and quantity relies on sophisticated retrograde signalling systems that enable appropriate responses to the respective stress situations. Among many other retrograde signals, reactive oxygen species, that are being generated during the initial stress response, are thought to be involved in transduction of redox-related signals that may also involve multiple redox pairs such as NAD(P)H/NAD(P)+ and redox-active metabolites such as glutathione. Deciphering such signals requires detailed knowledge of their amplitudes and temporal and spatial dynamics. Genetically encoded biosensors based on fluorescent proteins have been developed for a number of different redox-related physiological parameters and can be monitored in living cells, tissues and even whole plants using a variety of instruments adapted to the respective resolution requirements, thus opening gateways to retrograde signalling in plant cells. This review summarizes and critically evaluates current probes and devices used to monitor sensor fluorescence. It also outlines how biosensors can be used in combination with genetic and pharmacological approaches, to extract meaningful information and dissect the retrograde redox signalling systems in living plants.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf080","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In eukaryotic cells, protein supply to organelles varies depending on the stage of development and, in particular, on the exposure to environmental challenges. Adequate protein supply in terms of quality and quantity relies on sophisticated retrograde signalling systems that enable appropriate responses to the respective stress situations. Among many other retrograde signals, reactive oxygen species, that are being generated during the initial stress response, are thought to be involved in transduction of redox-related signals that may also involve multiple redox pairs such as NAD(P)H/NAD(P)+ and redox-active metabolites such as glutathione. Deciphering such signals requires detailed knowledge of their amplitudes and temporal and spatial dynamics. Genetically encoded biosensors based on fluorescent proteins have been developed for a number of different redox-related physiological parameters and can be monitored in living cells, tissues and even whole plants using a variety of instruments adapted to the respective resolution requirements, thus opening gateways to retrograde signalling in plant cells. This review summarizes and critically evaluates current probes and devices used to monitor sensor fluorescence. It also outlines how biosensors can be used in combination with genetic and pharmacological approaches, to extract meaningful information and dissect the retrograde redox signalling systems in living plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Building Climate-Resilient Crops: Genetic, Environmental, and Technological Strategies for Heat and Drought Stress Tolerance. Hydrogen Sulfide and Protein Persulfidation in Plant Stress Signaling. Iron, cold iron, is the master of them all: iron crosstalk with zinc, copper, phosphorus and nitrogen homeostasis. The potential of silicon in crop protection against phloem feeding and chewing insect pests - a review. A monomer-dimer switch modulates the activity of plant adenosine kinase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1