{"title":"MDA-9/Syntenin as a therapeutic cancer metastasis target: current molecular and preclinical understanding.","authors":"Swadesh K Das, Paul B Fisher","doi":"10.1080/14728222.2025.2472042","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Metastasis is a principal cause of patient morbidity and death from solid cancers with current therapies being inadequate.</p><p><strong>Areas covered: </strong>Detailed genomic analyses document mutational differences between the initial tumor and metastatic clones, posing a challenge to current targeted therapies, which focus predominantly on the phenotype of primary tumors. Considering the diverse signaling cascades and numerous compensatory pathways in metastasis, designing broad-spectrum anti-metastatic therapies remains challenging. Although significant anti-cancer activity is evident in specific patients with advanced cancers and metastases treated with single or combination immunotherapies, there are limitations, i.e. toxicity, immune inhibitory 'cold' tumors and the tumor microenvironment (TME), and intra- and intertumoral heterogeneity. Accordingly, multidisciplinary strategies are required to attack metastases and the TME to obtain optimal therapeutic responses.</p><p><strong>Expert opinion: </strong>To create potent anti-metastatic agents, defining critical genes/proteins and drugs controlling discrete steps in the metastatic cascade are mandatory. Melanoma differentiation-associated gene-9 (MDA-9), Syndecan Binding Protein (SDCBP) or Syntenin (MDA-9/Syntenin) is robustly expressed and serves essential roles in cancer disease progression through protein-protein interactions with additional metastasis-associated molecules and pathways. The importance of MDA-9/Syntenin in the metastatic process is now established and first-in-class inhibitory molecules look promising with some moving toward clinical evaluation.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"1-18"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2025.2472042","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Metastasis is a principal cause of patient morbidity and death from solid cancers with current therapies being inadequate.
Areas covered: Detailed genomic analyses document mutational differences between the initial tumor and metastatic clones, posing a challenge to current targeted therapies, which focus predominantly on the phenotype of primary tumors. Considering the diverse signaling cascades and numerous compensatory pathways in metastasis, designing broad-spectrum anti-metastatic therapies remains challenging. Although significant anti-cancer activity is evident in specific patients with advanced cancers and metastases treated with single or combination immunotherapies, there are limitations, i.e. toxicity, immune inhibitory 'cold' tumors and the tumor microenvironment (TME), and intra- and intertumoral heterogeneity. Accordingly, multidisciplinary strategies are required to attack metastases and the TME to obtain optimal therapeutic responses.
Expert opinion: To create potent anti-metastatic agents, defining critical genes/proteins and drugs controlling discrete steps in the metastatic cascade are mandatory. Melanoma differentiation-associated gene-9 (MDA-9), Syndecan Binding Protein (SDCBP) or Syntenin (MDA-9/Syntenin) is robustly expressed and serves essential roles in cancer disease progression through protein-protein interactions with additional metastasis-associated molecules and pathways. The importance of MDA-9/Syntenin in the metastatic process is now established and first-in-class inhibitory molecules look promising with some moving toward clinical evaluation.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.