Fine-tuned terpene synthase gene expression, functional promiscuity, and subcellular localization: Implications for the evolution of complex floral volatile bouquet in Caladenia orchids.

IF 3.9 2区 生物学 Q2 CELL BIOLOGY Plant and Cell Physiology Pub Date : 2025-03-08 DOI:10.1093/pcp/pcaf026
Fei Zhou, Yanan Zhao, James Perkins, Haiyang Xu, Eran Pichersky, Rod Peakall, Darren C J Wong
{"title":"Fine-tuned terpene synthase gene expression, functional promiscuity, and subcellular localization: Implications for the evolution of complex floral volatile bouquet in Caladenia orchids.","authors":"Fei Zhou, Yanan Zhao, James Perkins, Haiyang Xu, Eran Pichersky, Rod Peakall, Darren C J Wong","doi":"10.1093/pcp/pcaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Chemically mediated floral volatile signals are crucial for pollinator attraction across angiosperms. However, beyond model plant systems, the molecular mechanisms underpinning their tissue-specific biosynthesis, regulation, and emission are still poorly understood. In this study of a food-deceptive insect pollinated orchid (Caladenia denticulata), we elucidated the molecular basis of α-pinene biosynthesis - the major floral volatile emitted by this species and diverse lower abundance monoterpenes and sesquiterpenes. To achieve this, we combined comparative transcriptomics between active glandular trichome-rich sepal tips and labellum and non-active remaining flower tissues, floral volatile headspace profiling, phylogenetic analysis of a multigene family, and protein functional assays. We found (1) multiple branch points of the terpene synthase (TPS) biosynthetic pathway were highly expressed and co-ordinately upregulated in the active floral tissues compared to non-active ones, (2) the monoterpene synthase CdTPS-b3 underpinning α-pinene biosynthesis and a bona fide promiscuous TPS CdTPS-b4 that may contribute to the diverse array of low-abundance mono- and sesquiterpenes found in its flowers, and (3) dual localization (plastid and cytosol) of CdTPS-b3 and CdTPS-b4. Our findings highlight metabolic pathway specialization at multiple TPS pathway branch points supporting the biosynthesis and emission of α-pinene in C. denticulata flowers that are implicated in its generalist pollinator attraction. Furthermore, the complexity of diverse floral terpenes in Caladenia is likely mediated by finely tuned TPS gene expression, functional promiscuity, and subcellular localization. We predict that the combination of these three mechanisms underpin the evolution of multiple deceptive pollination strategies in Caladenia.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcaf026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemically mediated floral volatile signals are crucial for pollinator attraction across angiosperms. However, beyond model plant systems, the molecular mechanisms underpinning their tissue-specific biosynthesis, regulation, and emission are still poorly understood. In this study of a food-deceptive insect pollinated orchid (Caladenia denticulata), we elucidated the molecular basis of α-pinene biosynthesis - the major floral volatile emitted by this species and diverse lower abundance monoterpenes and sesquiterpenes. To achieve this, we combined comparative transcriptomics between active glandular trichome-rich sepal tips and labellum and non-active remaining flower tissues, floral volatile headspace profiling, phylogenetic analysis of a multigene family, and protein functional assays. We found (1) multiple branch points of the terpene synthase (TPS) biosynthetic pathway were highly expressed and co-ordinately upregulated in the active floral tissues compared to non-active ones, (2) the monoterpene synthase CdTPS-b3 underpinning α-pinene biosynthesis and a bona fide promiscuous TPS CdTPS-b4 that may contribute to the diverse array of low-abundance mono- and sesquiterpenes found in its flowers, and (3) dual localization (plastid and cytosol) of CdTPS-b3 and CdTPS-b4. Our findings highlight metabolic pathway specialization at multiple TPS pathway branch points supporting the biosynthesis and emission of α-pinene in C. denticulata flowers that are implicated in its generalist pollinator attraction. Furthermore, the complexity of diverse floral terpenes in Caladenia is likely mediated by finely tuned TPS gene expression, functional promiscuity, and subcellular localization. We predict that the combination of these three mechanisms underpin the evolution of multiple deceptive pollination strategies in Caladenia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant and Cell Physiology
Plant and Cell Physiology 生物-细胞生物学
CiteScore
8.40
自引率
4.10%
发文量
166
审稿时长
1.7 months
期刊介绍: Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels. Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.
期刊最新文献
Fine-tuned terpene synthase gene expression, functional promiscuity, and subcellular localization: Implications for the evolution of complex floral volatile bouquet in Caladenia orchids. Rice Master Regulator 'HYR' Enhances Growth and Defense Mechanisms with Consequences for Fall Armyworm Growth and Host Selection. Letter to the Editor: Removal of B800 Bacteriochlorophyll a from Light-Harvesting Complex 3 of the Purple Photosynthetic Bacterium Rhodoblastus acidophilus. Phycocyanobilin Binding and Specific Amino Acid Residues Near The Chromophore Contribute To Orange Light Perception By The Dualchrome Phytochrome Region. Genes for the Type-I Reaction Center and Galactolipid Synthesis are Required for Chlorophyll a Accumulation in a Purple Photosynthetic Bacterium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1