Poly(hydrazinophosphine diazide)s (PHPDs): Hybrid Organic–Inorganic Polymers via Polycondensation between PN Cages and Organic Diazides

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-03-10 DOI:10.1021/jacs.4c14881
Maryam F. Abdollahi, Erin N. Welsh, Mohsen Shayan, Anthony Olivier, Noémie Wilson-Faubert, Ulrike Werner-Zwanziger, Ali Nazemi, Audrey Laventure, Saurabh S. Chitnis
{"title":"Poly(hydrazinophosphine diazide)s (PHPDs): Hybrid Organic–Inorganic Polymers via Polycondensation between PN Cages and Organic Diazides","authors":"Maryam F. Abdollahi, Erin N. Welsh, Mohsen Shayan, Anthony Olivier, Noémie Wilson-Faubert, Ulrike Werner-Zwanziger, Ali Nazemi, Audrey Laventure, Saurabh S. Chitnis","doi":"10.1021/jacs.4c14881","DOIUrl":null,"url":null,"abstract":"Organic polymers generally feature 1-dimensional chains or 2-dimensional rings in their backbones since synthetic challenges limit the availability of 3-dimensional monomers. Inorganic cages are less strained and more accessible, offering an alternative route to explore this parameter space. However, only two families─carboranes and polyhedral oligomeric silsesquioxanes (POSS)─have been well-studied, revealing materials with valuable mechanical and thermal properties. Further exploration of this frontier requires the development of new inorganic cages that are accessible, stable, and polymerizable. Here we report that an easily assembled, bench-stable PN cage, P(NMeNMe)<sub>3</sub>P, undergoes Staudinger polycondensation with organic diazides to yield robust, solution-processable, and film-forming linear poly(trihydrazino-diphosphine diazide)s─PHPDs─as a new family of hybrid organic–inorganic polymers. Their solubility can be controlled by diazide choice and backbone architecture, which we rationally modify to access alternating or multiblock copolymers. We also show how a tetraphosphorus cage, P<sub>4</sub>(NMe)<sub>6</sub>, can be used to cross-link PHPDs. The <i>T</i><sub>g</sub> values for PHPDs are comparable to those of rigid π-conjugated polymers (&gt;150 °C), and, despite a high nitrogen content (up to 32%) and three N–N σ-bonds per repeat unit, they show decomposition temperatures &gt;200 °C with char yields up to 60%. These data support hypotheses of high stability arising from the presence of 3-dimensional backbone units. We further show that PHPDs may be leveraged for halogen-free flame retardancy. Collectively, the results debut new low-carbon polymers with an unusual backbone topology, reveal the design rules for controlling their microstructures and properties, and lay the foundation for future applied studies.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"31 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14881","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic polymers generally feature 1-dimensional chains or 2-dimensional rings in their backbones since synthetic challenges limit the availability of 3-dimensional monomers. Inorganic cages are less strained and more accessible, offering an alternative route to explore this parameter space. However, only two families─carboranes and polyhedral oligomeric silsesquioxanes (POSS)─have been well-studied, revealing materials with valuable mechanical and thermal properties. Further exploration of this frontier requires the development of new inorganic cages that are accessible, stable, and polymerizable. Here we report that an easily assembled, bench-stable PN cage, P(NMeNMe)3P, undergoes Staudinger polycondensation with organic diazides to yield robust, solution-processable, and film-forming linear poly(trihydrazino-diphosphine diazide)s─PHPDs─as a new family of hybrid organic–inorganic polymers. Their solubility can be controlled by diazide choice and backbone architecture, which we rationally modify to access alternating or multiblock copolymers. We also show how a tetraphosphorus cage, P4(NMe)6, can be used to cross-link PHPDs. The Tg values for PHPDs are comparable to those of rigid π-conjugated polymers (>150 °C), and, despite a high nitrogen content (up to 32%) and three N–N σ-bonds per repeat unit, they show decomposition temperatures >200 °C with char yields up to 60%. These data support hypotheses of high stability arising from the presence of 3-dimensional backbone units. We further show that PHPDs may be leveraged for halogen-free flame retardancy. Collectively, the results debut new low-carbon polymers with an unusual backbone topology, reveal the design rules for controlling their microstructures and properties, and lay the foundation for future applied studies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Metal-Based Approaches for the Fight against Antimicrobial Resistance: Mechanisms, Opportunities, and Challenges Convection-Enhanced Delivery of Auristatin-Conjugated Layer-by-Layer Nanoparticles for Glioblastoma Treatment Poly(hydrazinophosphine diazide)s (PHPDs): Hybrid Organic–Inorganic Polymers via Polycondensation between PN Cages and Organic Diazides Deciphering the Competitive Charge Storage Chemistry of Metal Cations and Protons in Aqueous MnO2-Based Supercapacitors Synthesis of (+)-Saxitoxin Facilitated by a Chiral Auxiliary for Photocycloadditions Involving Alkenylboronate Esters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1