VqERF1B-VqERF062-VqNSTS2 transcriptional cascade enhances stilbene biosynthesis and resistance to powdery mildew in grapevine

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2025-03-10 DOI:10.1111/pbi.70041
Chaohui Yan, Wandi Liu, Ruimin Li, Guotian Liu, Yuejin Wang
{"title":"VqERF1B-VqERF062-VqNSTS2 transcriptional cascade enhances stilbene biosynthesis and resistance to powdery mildew in grapevine","authors":"Chaohui Yan, Wandi Liu, Ruimin Li, Guotian Liu, Yuejin Wang","doi":"10.1111/pbi.70041","DOIUrl":null,"url":null,"abstract":"Grapes, as one of the world's oldest economic crops, are severely affected by grape powdery mildew, causing significant economic losses. As a phytoalexin against powdery mildew, stilbenes and their key synthetic gene, <i>stilbene synthase</i> (<i>STS</i>), are highly sought after by researchers. In our previous research, a new gene, <i>VqNSTS2</i>, was identified from <i>Vitis quinquangularis</i> accession 'Danfeng-2' through transcriptomic analysis. However, the function and molecular mechanism of <i>VqNSTS2</i> gene remain unknown. Here, by characterization and transient overexpression of <i>VqNSTS2</i>, we demonstrated that its expression product, stilbenes, can be detected in the model plant tobacco, which does not inherently contain <i>STSs</i>. After artificially inoculating transgenic Arabidopsis lines overexpressing <i>VqNSTS2</i> with <i>Erysiphe necator</i>, it was found that <i>VqNSTS2</i> actively moved to the pathogen's haustorium after responding to the pathogen, recognized and enveloped the haustorium, blocking the pathogen's infection and invasion and exhibited disease resistance. Furthermore, <i>Agrobacterium</i>-mediated stable overexpression of <i>VqNSTS2</i> promoted stilbene accumulation and enhanced resistance of the <i>V. vinifera</i> susceptible cultivar 'Thompson Seedless' to <i>E. necator</i>. Additionally, through screening and identification, a transcription factor, VqERF062, was found to directly bind to the DRE and RAA motifs on ProVqNSTS2, positively regulating <i>VqNSTS2</i> expression. Moreover, VqERF062 directly interacted with VqERF1B to promote the transcription of <i>VqNSTS2</i> in addition to forming a homodimer with itself. Taken together, our findings reveal that the VqERF1B-VqERF062- module is required for grape resistance to <i>E. necator</i> and providing insights into the regulatory mechanism of stilbenes biosynthesis.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"192 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grapes, as one of the world's oldest economic crops, are severely affected by grape powdery mildew, causing significant economic losses. As a phytoalexin against powdery mildew, stilbenes and their key synthetic gene, stilbene synthase (STS), are highly sought after by researchers. In our previous research, a new gene, VqNSTS2, was identified from Vitis quinquangularis accession 'Danfeng-2' through transcriptomic analysis. However, the function and molecular mechanism of VqNSTS2 gene remain unknown. Here, by characterization and transient overexpression of VqNSTS2, we demonstrated that its expression product, stilbenes, can be detected in the model plant tobacco, which does not inherently contain STSs. After artificially inoculating transgenic Arabidopsis lines overexpressing VqNSTS2 with Erysiphe necator, it was found that VqNSTS2 actively moved to the pathogen's haustorium after responding to the pathogen, recognized and enveloped the haustorium, blocking the pathogen's infection and invasion and exhibited disease resistance. Furthermore, Agrobacterium-mediated stable overexpression of VqNSTS2 promoted stilbene accumulation and enhanced resistance of the V. vinifera susceptible cultivar 'Thompson Seedless' to E. necator. Additionally, through screening and identification, a transcription factor, VqERF062, was found to directly bind to the DRE and RAA motifs on ProVqNSTS2, positively regulating VqNSTS2 expression. Moreover, VqERF062 directly interacted with VqERF1B to promote the transcription of VqNSTS2 in addition to forming a homodimer with itself. Taken together, our findings reveal that the VqERF1B-VqERF062- module is required for grape resistance to E. necator and providing insights into the regulatory mechanism of stilbenes biosynthesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
VqERF1B-VqERF062-VqNSTS2 transcriptional cascade enhances stilbene biosynthesis and resistance to powdery mildew in grapevine Expression of a modified Avr3a gene under the control of a synthetic pathogen-inducible promoter leads to Phytophthora infestans resistance in potato Creation of thermosensitive male sterility line in rice via a temperature-sensitive mutation in receptor kinase ZmEREB180 modulates waterlogging tolerance in maize by regulating root development and antioxidant gene expression Plant genetic transformation: achievements, current status and future prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1