Genomic selection in pig breeding: comparative analysis of machine learning algorithms

IF 3.6 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Genetics Selection Evolution Pub Date : 2025-03-10 DOI:10.1186/s12711-025-00957-3
Ruilin Su, Jingbo Lv, Yahui Xue, Sheng Jiang, Lei Zhou, Li Jiang, Junyan Tan, Zhencai Shen, Ping Zhong, Jianfeng Liu
{"title":"Genomic selection in pig breeding: comparative analysis of machine learning algorithms","authors":"Ruilin Su, Jingbo Lv, Yahui Xue, Sheng Jiang, Lei Zhou, Li Jiang, Junyan Tan, Zhencai Shen, Ping Zhong, Jianfeng Liu","doi":"10.1186/s12711-025-00957-3","DOIUrl":null,"url":null,"abstract":"The effectiveness of genomic prediction (GP) significantly influences breeding progress, and employing SNP markers to predict phenotypic values is a pivotal aspect of pig breeding. Machine learning (ML) methods are usually used to predict phenotypic values since their advantages in processing high dimensional data. While, the existing researches have not indicated which ML methods are suitable for most pig genomic prediction. Therefore, it is necessary to select appropriate methods from a large number of ML methods as long as genomic prediction is performed. This paper compared the performance of popular ML methods in predicting pig phenotypes and then found out suitable methods for most traits. In this paper, five commonly used datasets from other literatures were utilized to compare the performance of different ML methods. The experimental results demonstrate that Stacking performs best on the PIC dataset where the trait information is hidden, and the performs of kernel ridge regression with rbf kernel (KRR-rbf) closely follows. Support vector regression (SVR) performs best in predicting reproductive traits, followed by genomic best linear unbiased prediction (GBLUP). GBLUP achieves the best performance on growth traits, with SVR as the second best. GBLUP achieves good performance for GP problems. Similarly, the Stacking, SVR, and KRR-RBF methods also achieve high prediction accuracy. Moreover, LR statistical analysis shows that Stacking, SVR and KRR are stable. When applying ML methods for phenotypic values prediction in pigs, we recommend these three approaches.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"38 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-025-00957-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The effectiveness of genomic prediction (GP) significantly influences breeding progress, and employing SNP markers to predict phenotypic values is a pivotal aspect of pig breeding. Machine learning (ML) methods are usually used to predict phenotypic values since their advantages in processing high dimensional data. While, the existing researches have not indicated which ML methods are suitable for most pig genomic prediction. Therefore, it is necessary to select appropriate methods from a large number of ML methods as long as genomic prediction is performed. This paper compared the performance of popular ML methods in predicting pig phenotypes and then found out suitable methods for most traits. In this paper, five commonly used datasets from other literatures were utilized to compare the performance of different ML methods. The experimental results demonstrate that Stacking performs best on the PIC dataset where the trait information is hidden, and the performs of kernel ridge regression with rbf kernel (KRR-rbf) closely follows. Support vector regression (SVR) performs best in predicting reproductive traits, followed by genomic best linear unbiased prediction (GBLUP). GBLUP achieves the best performance on growth traits, with SVR as the second best. GBLUP achieves good performance for GP problems. Similarly, the Stacking, SVR, and KRR-RBF methods also achieve high prediction accuracy. Moreover, LR statistical analysis shows that Stacking, SVR and KRR are stable. When applying ML methods for phenotypic values prediction in pigs, we recommend these three approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics Selection Evolution
Genetics Selection Evolution 生物-奶制品与动物科学
CiteScore
6.50
自引率
9.80%
发文量
74
审稿时长
1 months
期刊介绍: Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.
期刊最新文献
Molecular breeding of pigs in the genome editing era Genomic selection in pig breeding: comparative analysis of machine learning algorithms Merging metabolomics and genomics provides a catalog of genetic factors that influence molecular phenotypes in pigs linking relevant metabolic pathways Evaluation of genomic selection models using whole genome sequence data and functional annotation in Belgian Blue cattle Genome-wide association analysis using multiple Atlantic salmon populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1