Machine learning-guided integration of fixed and mobile sensors for high resolution urban PM2.5 mapping

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2025-03-10 DOI:10.1038/s41612-025-00984-3
Tianshuai Li, Xin Huang, Qingzhu Zhang, Xinfeng Wang, Xianfeng Wang, Anbao Zhu, Zhaolin Wei, Xinyan Wang, Haolin Wang, Jiaqi Chen, Min Li, Qiao Wang, Wenxing Wang
{"title":"Machine learning-guided integration of fixed and mobile sensors for high resolution urban PM2.5 mapping","authors":"Tianshuai Li, Xin Huang, Qingzhu Zhang, Xinfeng Wang, Xianfeng Wang, Anbao Zhu, Zhaolin Wei, Xinyan Wang, Haolin Wang, Jiaqi Chen, Min Li, Qiao Wang, Wenxing Wang","doi":"10.1038/s41612-025-00984-3","DOIUrl":null,"url":null,"abstract":"<p>Urban areas exhibit significant gradients in Fine Particulate Matter (PM<sub>2.5</sub>) concentration variability. Understanding the spatiotemporal distribution and formation mechanisms of PM<sub>2.5</sub> is crucial for public health, environmental justice, and air pollution mitigation strategies. Here, we utilized machine learning and integrated air quality sensor monitoring networks consisting of 200 mobile cruising vehicles and 614 fixed micro–stations to reconstruct PM<sub>2.5</sub> pollution maps for Jinan’s urban area with a high spatiotemporal resolution of 500 m and 1 h. Our study demonstrated that pollution mapping can effectively capture spatiotemporal variations at the urban microscale. By optimizing the spatial design of monitoring networks, we developed a cost-effective air quality monitoring strategy that reduces expenses by nearly 70% while maintaining high precision. The results of multi-model coupling indicated that secondary inorganic aerosols were the primary driving factors for PM2.5 pollution in Jinan. Our work offers a unique perspective on urban air quality monitoring and pollution attribution.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"71 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00984-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Urban areas exhibit significant gradients in Fine Particulate Matter (PM2.5) concentration variability. Understanding the spatiotemporal distribution and formation mechanisms of PM2.5 is crucial for public health, environmental justice, and air pollution mitigation strategies. Here, we utilized machine learning and integrated air quality sensor monitoring networks consisting of 200 mobile cruising vehicles and 614 fixed micro–stations to reconstruct PM2.5 pollution maps for Jinan’s urban area with a high spatiotemporal resolution of 500 m and 1 h. Our study demonstrated that pollution mapping can effectively capture spatiotemporal variations at the urban microscale. By optimizing the spatial design of monitoring networks, we developed a cost-effective air quality monitoring strategy that reduces expenses by nearly 70% while maintaining high precision. The results of multi-model coupling indicated that secondary inorganic aerosols were the primary driving factors for PM2.5 pollution in Jinan. Our work offers a unique perspective on urban air quality monitoring and pollution attribution.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
The impact of warming Tibetan Plateau on the 2020 summer unprecedented Northeastern Pacific Marine heatwave Machine learning-guided integration of fixed and mobile sensors for high resolution urban PM2.5 mapping A kinematic analysis of extratropical cyclones, warm conveyor belts and atmospheric rivers Risk of glacier collapse in the Southeast Tibetan basin Inconsistent influence of temperature, precipitation, and CO2 variations on the plateau alpine vegetation carbon flux
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1