Fully degradable, transparent, and flexible photodetectors using ZnO nanowires and PEDOT:PSS based nanofibres

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2025-03-10 DOI:10.1038/s41528-025-00385-9
Xenofon Karagiorgis, Nitheesh M. Nair, Sofia Sandhu, Abhishek Singh Dahiya, Peter J. Skabara, Ravinder Dahiya
{"title":"Fully degradable, transparent, and flexible photodetectors using ZnO nanowires and PEDOT:PSS based nanofibres","authors":"Xenofon Karagiorgis, Nitheesh M. Nair, Sofia Sandhu, Abhishek Singh Dahiya, Peter J. Skabara, Ravinder Dahiya","doi":"10.1038/s41528-025-00385-9","DOIUrl":null,"url":null,"abstract":"<p>Transparent light detection devices are attractive for emerging see-through applications such as augmented reality, smart windows and optical communications using light fidelity (Li-Fi). Herein, we present flexible and transparent photodetectors (PDs) using conductive poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS): Ag nanowires (NWs) based nanofibres and zinc oxide (ZnO) NWs on a transparent and degradable cellulose acetate (CA) substrate. The electrospun (PEDOT:PSS): Ag NW-based nanofibres exhibit a sheet resistance of 11 Ω/sq and optical transmittance of 79% (at 550 nm of wavelength). The PDs comprise of ZnO NWs, as photosensitive materials, bridging the electrode based on conductive nanofibres on CA substrate. The developed PDs exhibit high responsivity (1.10 ×10<sup>6</sup> A/W) and show excellent stability under dynamic exposure to ultraviolet (UV) light, and on both flat and curved surfaces. The eco-friendly PDs present here can degrade naturally at the end of life – thus offering an electronic waste-free solution for transparent electrodes and flexible optoelectronics applications.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"10 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00385-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Transparent light detection devices are attractive for emerging see-through applications such as augmented reality, smart windows and optical communications using light fidelity (Li-Fi). Herein, we present flexible and transparent photodetectors (PDs) using conductive poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS): Ag nanowires (NWs) based nanofibres and zinc oxide (ZnO) NWs on a transparent and degradable cellulose acetate (CA) substrate. The electrospun (PEDOT:PSS): Ag NW-based nanofibres exhibit a sheet resistance of 11 Ω/sq and optical transmittance of 79% (at 550 nm of wavelength). The PDs comprise of ZnO NWs, as photosensitive materials, bridging the electrode based on conductive nanofibres on CA substrate. The developed PDs exhibit high responsivity (1.10 ×106 A/W) and show excellent stability under dynamic exposure to ultraviolet (UV) light, and on both flat and curved surfaces. The eco-friendly PDs present here can degrade naturally at the end of life – thus offering an electronic waste-free solution for transparent electrodes and flexible optoelectronics applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Fully degradable, transparent, and flexible photodetectors using ZnO nanowires and PEDOT:PSS based nanofibres Ion dipole interaction and directional alignment enabled high piezoelectric property polyvinylidene fluoride for flexible electronics A computational unfolding-based design method for three-dimensional conformal electronic skin with adjustable mounting strain Fully screen printed stretchable liquid metal multilayer circuits using green solvents and scalable water-spray sintering Ultrasensitive biosensing meta-garment via wetting gradient effect for heat-exhaustion warning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1