Improvement of the Circuit Analyzer Problem Solver CALYPSO

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2025-02-20 DOI:10.1109/TASC.2025.3543798
Marco Breschi;Antonio Macchiagodena;Pier Luigi Ribani;Andrea Musso;Giuliano Angeli;Marco Bocchi
{"title":"Improvement of the Circuit Analyzer Problem Solver CALYPSO","authors":"Marco Breschi;Antonio Macchiagodena;Pier Luigi Ribani;Andrea Musso;Giuliano Angeli;Marco Bocchi","doi":"10.1109/TASC.2025.3543798","DOIUrl":null,"url":null,"abstract":"The no-insulation high-temperature superconducting (NI-HTS) coil technology is a promising field of application of HTS tapes, which has gained popularity in recent years. Compared to conventional insulated coils, NI-HTS coils have a better ability to cope with quenches, given the possibility for current and heat to redistribute towards adjacent turns in presence of a hot-spot. In recent years, the authors developed a nonlinear circuit model to compute current distribution and AC losses in NI-HTS coils (named CALYPSO). This model describes the currents flowing from turn to turn due to the NI configuration, as well as the magnetization currents arising in each tape. However, applying this model to coils composed of a large number of turns results in a high computational burden. This work presents an in-depth discussion of the reasons for the long computation time and the solutions and code improvements implemented to tackle this issue. Additionally, a comparison between the losses predicted by the code and those measured on straight REBCO tapes is presented. The model is then applied to investigate the electrodynamics of a NI pancake coil including both magnetization currents and radial currents. The impact of surface contact resistivity between turns on the delay between the magnetic field along the coil axis and the transport current is analyzed, showing the details of the current distribution between turns and inside individual tapes.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10896726/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The no-insulation high-temperature superconducting (NI-HTS) coil technology is a promising field of application of HTS tapes, which has gained popularity in recent years. Compared to conventional insulated coils, NI-HTS coils have a better ability to cope with quenches, given the possibility for current and heat to redistribute towards adjacent turns in presence of a hot-spot. In recent years, the authors developed a nonlinear circuit model to compute current distribution and AC losses in NI-HTS coils (named CALYPSO). This model describes the currents flowing from turn to turn due to the NI configuration, as well as the magnetization currents arising in each tape. However, applying this model to coils composed of a large number of turns results in a high computational burden. This work presents an in-depth discussion of the reasons for the long computation time and the solutions and code improvements implemented to tackle this issue. Additionally, a comparison between the losses predicted by the code and those measured on straight REBCO tapes is presented. The model is then applied to investigate the electrodynamics of a NI pancake coil including both magnetization currents and radial currents. The impact of surface contact resistivity between turns on the delay between the magnetic field along the coil axis and the transport current is analyzed, showing the details of the current distribution between turns and inside individual tapes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
Design of Hopfield Networks Based on Superconducting Coupled Oscillators Realization of a Monolithic, Planar SLUG Amplifier for the Quantum Electronics Toolbox Performance Improvement of LTS Undulators for Synchrotron Light Sources Current Leads Test for FECR Cryostat Axial Tensile/Transverse Compressive Stress Characteristics of Advanced Cu-Nb Reinforced Nb3Sn Wires for 33 T Cryogen-Free Superconducting Magnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1