{"title":"ASMAFL: Adaptive Staleness-Aware Momentum Asynchronous Federated Learning in Edge Computing","authors":"Dewen Qiao;Songtao Guo;Jun Zhao;Junqing Le;Pengzhan Zhou;Mingyan Li;Xuetao Chen","doi":"10.1109/TMC.2024.3510135","DOIUrl":null,"url":null,"abstract":"Compared with synchronous federated learning (FL), asynchronous FL (AFL) has attracted more and more attention in edge computing (EC) fields because of its strong adaptability to heterogeneous application scenarios. However, the non-independent and identically distributed (Non-IID) data across devices and the staleness-aware estimation of unreliable wireless connections and limited edge resources make it much more difficult to achieve better AFL-related applications. To handle this problem, we propose an <bold><u>A</u></b>daptive <bold><u>S</u></b>taleness-aware <bold><u>M</u></b>omentum <bold><u>A</u></b>ccelerated <bold><u>AFL</u></b> (ASMAFL) algorithm to reduce the resources consumption of heterogeneous wireless communication EC (WCEC) scenarios, as well as decrease the negative impact of Non-IID data for model training. Specifically, we first introduce the staleness-aware parameter and a unified momentum gradient descent (GD) framework to reformulate AFL. Then, we establish global convergence properties of AFL, derive an upper bound on AFL convergence rate, and find that the bound is related to the staleness-aware parameter and Non-IIDness. Next, we formulate the bound into a minimization problem of resource consumption under given model accuracy, and the corresponding staleness-aware parameter of devices will be recomputed after each asynchronous aggregation to eliminate the differences of local models’ contribution to global model aggregation. Finally, extensive experiments are carried out to validate the superiority of ASMAFL in model accuracy, convergence rate, resources consumption, Non-IID issue, etc.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 4","pages":"3390-3406"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10772339/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with synchronous federated learning (FL), asynchronous FL (AFL) has attracted more and more attention in edge computing (EC) fields because of its strong adaptability to heterogeneous application scenarios. However, the non-independent and identically distributed (Non-IID) data across devices and the staleness-aware estimation of unreliable wireless connections and limited edge resources make it much more difficult to achieve better AFL-related applications. To handle this problem, we propose an Adaptive Staleness-aware Momentum Accelerated AFL (ASMAFL) algorithm to reduce the resources consumption of heterogeneous wireless communication EC (WCEC) scenarios, as well as decrease the negative impact of Non-IID data for model training. Specifically, we first introduce the staleness-aware parameter and a unified momentum gradient descent (GD) framework to reformulate AFL. Then, we establish global convergence properties of AFL, derive an upper bound on AFL convergence rate, and find that the bound is related to the staleness-aware parameter and Non-IIDness. Next, we formulate the bound into a minimization problem of resource consumption under given model accuracy, and the corresponding staleness-aware parameter of devices will be recomputed after each asynchronous aggregation to eliminate the differences of local models’ contribution to global model aggregation. Finally, extensive experiments are carried out to validate the superiority of ASMAFL in model accuracy, convergence rate, resources consumption, Non-IID issue, etc.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.